【题目】已知球内接正四棱锥
的高为
相交于
,球的表面积为
,若
为
中点.
![]()
(1)求异面直线
和
所成角的余弦值;
(2)求点
到平面
的距离.
【答案】(1)
;(2)
.
【解析】试题分析:(1) 由球的表面积求出球的半径R,设球心为
,则
必在
上,连
,根据球的性质有
,求解易得底面边长以及侧棱长,则结论易得;(2)证明
平面
,则
到平面
的距离等于
到平面
的距离,由
,则结论易得.
试题解析:由球的表面积公式
,得球的半径
,
设球心为
,在正四棱锥
中,高为
,则
必在
上,
连
,则
,
则在
,有
,即
,可得正方形
的边长为
,
侧棱
.
(1)在正方形
中,
,所
以是异面直线
和
所成的角或其补角,
取
中点
,在等腰
中,可得
,斜高
,
则在
中,
,
所以异面直线
和
所成的角的余弦值为
;
(2)由
为
中点,得
,
且满足
平面
平面
,所以
平面
,
所以
到平面
的距离等于
到平面
的距离,
又因为
,
再设
到平面
的距离为
,则由
,
可得
,则
,
所以点
到平面
的距离
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心和抛物线
的顶点都在坐标原点
,
和
有公共焦点
,点
在
轴正半轴上,且
的长轴长、短轴长及点
到直线
的距离成等比数列。
(Ⅰ)当
的准线与直线
的距离为
时,求
及
的方程;
(Ⅱ)设过点
且斜率为
的直线
交
于
,
两点,交
于
,
两点。当
时,求
的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】微信运动和运动手环的普及,增强了人民运动的积极性,每天一万步称为一种健康时尚,某中学在全校范围内内积极倡导和督促师生开展“每天一万步”活动,经过几个月的扎实落地工作后,学校想了解全校师生每天一万步的情况,学校界定一人一天走路不足
千步为不健康生活方式,不少于
千步为超健康生活方式者,其他为一般生活方式者,学校委托数学组调查,数学组采用分层抽样的办法去估计全校师生的情况,结合实际及便于分层抽样,认定全校教师人数为
人,高一学生人数为
人,高二学生人数
人,高三学生人数
,从中抽取
人作为调查对象,得到了如图所示的这
人的频率分布直方图,这
人中有
人被学校界定为不健康生活方式者.
(1)求这次作为抽样调查对象的教师人数;
(2)根据频率分布直方图估算全校师生每人一天走路步数的中位数(四舍五入精确到整数步);
(3)校办公室欲从全校师生中速记抽取
人作为“每天一万步”活动的慰问对象,计划学校界定不健康生活方式者鞭策性精神鼓励
元,超健康生活方式者表彰奖励
元,一般生活方式者鼓励性奖励
元,利用样本估计总体,将频率视为概率,求这次校办公室慰问奖励金额恰好为
元的概率.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知幂函数f(x)=x(2﹣k)(1+k)(k∈Z),且f(x)在(0,+∞)上单调递增.
(1)求实数k的值,并写出相应的函数f(x)的解析式;
(2)试判断是否存在正数q,使函数g(x)=1﹣qf(x)+(2q﹣1)x在区间[﹣1,2]上的值域为[﹣4,
].若存在,求出q的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的奇函数,且在(0,+∞)是增函数,又f(﹣3)=0,则不等式xf(x)≥0的解集是( )
A.{x|﹣3≤x≤3}
B.{x|﹣3≤x<0或0<x≤3}
C.{x|x≤﹣3或x≥3}
D.{x|x≤﹣3或x=0或x≥3}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,将曲线
(
为参数)上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到曲线
;以坐标原点
为极点,以
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的极坐标方程;
(2)已知点
,直线
的极坐标方程为
,它与曲线
的交点为
,
,与曲线
的交点为
,求
的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com