精英家教网 > 高中数学 > 题目详情

【题目】随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,201911日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)收入个税起征点专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用等.其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新个税政策的税率表部分内容如下:

级数

一级

二级

三级

四级

每月应纳税所得额(含税)

不超过3000元的部分

超过3000元至12000元的部分

超过12000元至25000元的部分

超过25000元至35000元的部分

税率

3

10

20

25

1)现有李某月收入29600元,膝下有一名子女,需要赡养老人,除此之外,无其它专项附加扣除.请问李某月应缴纳的个税金额为多少?

2)为研究月薪为20000元的群体的纳税情况,现收集了某城市500名的公司白领的相关资料,通过整理资料可知,有一个孩子的有400人,没有孩子的有100人,有一个孩子的人中有300人需要赡养老人,没有孩子的人中有50人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的500人中,任何两人均不在一个家庭).若他们的月收入均为20000元,依据样本估计总体的思想,试估计在新个税政策下这类人群缴纳个税金额的分布列与期望.

【答案】1)李某月应缴纳的个税金额为元,(2)分布列详见解析,期望为1150元

【解析】

1)分段计算个人所得税额;
2)随机变量X的所有可能的取值为990119013901590,分别求出各值对应的概率,列出分布列,求期望即可.

解:(1)李某月应纳税所得额(含税)为:2960050001000200021600
不超过3000的部分税额为3000×3%90
超过3000元至12000元的部分税额为9000×10%900元,
超过12000元至25000元的部分税额为9600×20%1920
所以李某月应缴纳的个税金额为9090019202910元,
2)有一个孩子需要赡养老人应纳税所得额(含税)为:2000050001000200012000元,
月应缴纳的个税金额为:90900990
有一个孩子不需要赡养老人应纳税所得额(含税)为:200005000100014000元,
月应缴纳的个税金额为:909004001390元;
没有孩子需要赡养老人应纳税所得额(含税)为:200005000200013000元,
月应缴纳的个税金额为:909002001190元;
没有孩子不需要赡养老人应纳税所得额(含税)为:20000500015000元,
月应缴纳的个税金额为:909006001590元;

所以随机变量X的分布列为:

990

1190

1390

1590

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学高三年级有400名学生参加月考,用简单随机抽样的方法抽取了一个容量为50的样本,得到数学成绩的频率分布直方图如图所示.

1)求第四个小矩形的高;

2)估计本校在这次统测中数学成绩不低于120分的人数;

3)已知样本中,成绩在内的有两名女生,现从成绩在这个分数段的学生中随机选取2人做学习交流,求恰好男生女生各有一名的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为常数,函数

1)过坐标原点作曲线的切线,设切点为,求

2)令,若函数在区间上是单调减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车生产厂家为了解某型号电动汽车的“实际平均续航里程数”,收集了使用该型号电动汽车年以上的部分客户的相关数据,得到他们的电动汽车的“实际平均续航里程数”从年龄在40岁以下的客户中抽取10位归为A组,从年龄在40岁(含40岁)以上的客户中抽取10位归为B组,将他们的电动汽车的“实际平均续航里程数”整理成下图,其中“+”表示A组的客户,“⊙”表示B组的客户

注:“实际平均续航里程数”是指电动汽车的行驶总里程与充电次数的比值.

Ⅰ)记AB两组客户的电动汽车的“实际平均续航里程数”的平均值分别为,根据图中数据,试比较的大小(结论不要求证明)

Ⅱ)从AB两组客户中随机抽取2位,求其中至少有一位是A组的客户的概率;

(III)如果客户的电动汽车的“实际平均续航里程数”不小于350,那么称该客户为“驾驶达人”.从AB两组客户中,各随机抽取1位,记“驾驶达人”的人数为,求随机变量的分布列及其数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=2pxp0)的焦点为F,直线y=kx+1)与C相切于点A|AF|=2

)求抛物线C的方程;

)设直线lCMN两点,TMN的中点,若|MN|=8,求点Ty轴距离的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,函数

1)若正项数列满足,试求出,由此归纳出通项,并加以证明;

2)若正项数列满足nN*),数列的前项和为Tn,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某音乐院校举行“校园之星”评选活动,评委由本校全体学生组成,对两位选手,随机调查了20个学生的评分,得到下面的茎叶图:

所得分数

低于60分

60分到79分

不低于80分

分流方向

淘汰出局

复赛待选

直接晋级

(1)通过茎叶图比较两位选手所得分数的平均值及分散程度(不要求计算出具体值,得出结论即可);

(2)举办方将会根据评分结果对选手进行三向分流,根据所得分数,估计两位选手中哪位选手直接晋级的概率更大,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游爱好者计划从3个亚洲国家A1A2A33个欧洲国家B1B2B3中选择2个国家去旅游.

(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;

(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】受电视机在保修期内维修费等因素的影响,企业生产每台电视机的利润与该电视机首次出现故障的时间有关.某电视机制造厂生产甲、乙两种型号电视机,保修期均为2年,现从该厂已售出的两种型号电视机中各随机抽取50台,统计数据如下:

品牌

首次出现故障时间x(年)

电视机数量(台)

3

5

42

8

42

每台利润(千元)

1

2

3

1.8

2.8

将频率视为概率,解答下列问题:

1)从该厂生产的甲种型号电视机中随机抽取一台,求首次出现故障发生在保修期内的概率;

2)该厂预计今后这两种型号电视机销量相当,由于资金限制,只能生产其中一种型号电视机,若从经济效益的角度考虑,你认为应该产生哪种型号电视机?说明理由.

查看答案和解析>>

同步练习册答案