精英家教网 > 高中数学 > 题目详情

设函数f(x)=数学公式
(1)求它的定义域;
(2)判断它的奇偶性.

解:(1)要使f(x)有意义,则1-x2≠0,
所以x≠±1,
所以函数f(x)的定义域为:{x|x≠±1,x∈R}.
(2)由(1)知f(x)的定义域为:{x|x≠±1,x∈R},关于原点对称.

所以f(x)为偶函数.
分析:(1)要使f(x)有意义,令1-x2≠0解出即为函数定义域;
(2)根据函数奇偶性的定义判断即可,注意定义域是否关于原点对称.
点评:本题考查函数的奇偶性及定义域的求法,属基础题,定义域关于原点对称是函数具有奇偶性的必要不充分条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x3+3x2+6x+4,a,b都是实数,且f(a)=14,f(b)=-14,则a+b的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn与通项an满足Sn=
1
2
(1-an).
(1)求数列{an}的通项公式;
(2)设函数f(x)=log
1
3
x
,bn=f(a1)+f(a2)+…+f(an),求Tn=
1
b1
+
1
b2
+
1
b3
+
1
bn
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1  (x>0)
-1(x<0)
,则不等式xf(x)+x≤4的解集是
(-∞,0)∪(0,2]
(-∞,0)∪(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-1,当自变量x由1变到1.1时,函数的平均变化率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•重庆)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是(  )

查看答案和解析>>

同步练习册答案