【题目】
分别是双曲线
的左右焦点,过
的直线
与双曲线的左右两支分别交于
两点.若
为等边三角形,则
的面积为( )
A. 8 B.
C.
D. 16
【答案】C
【解析】
由双曲线的定义,可得F1A﹣F2A=F1A﹣AB=F1B=2a,BF2﹣BF1=2a,BF2=4a,F1F2=2c,再在△F1BF2中应用余弦定理得,a,c的关系,即可求出△BF1F2的面积.
因为△ABF2为等边三角形,不妨设AB=BF2=AF2=m,
A为双曲线上一点,F1A﹣F2A=F1A﹣AB=F1B=2a,
B为双曲线上一点,则BF2﹣BF1=2a,BF2=4a,F1F2=2c,
在△F1BF2中应用余弦定理得:4c2=4a2+16a2﹣22a4acos120°,
得c2=7a2,
在双曲线中:c2=a2+b2,b2=24
∴a2=4
∴△BF1F2的面积为
=
=2
×4=8
.
故选:C.
科目:高中数学 来源: 题型:
【题目】一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是
;从袋中任意摸出2个球,至少得到1个白球的概率是
.
(Ⅰ)若袋中共有10个球,
(i)求白球的个数;
(ii)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望Eξ.
(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于
. 并指出袋中哪种颜色的球个数最少.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分13分)
某食品厂进行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工费为
元(
为常数,且
,设该食品厂每公斤蘑菇的出厂价为
元(
),根据市场调查,销售量
与
成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.
(Ⅰ)求该工厂的每日利润
元与每公斤蘑菇的出厂价
元的函数关系式;
(Ⅱ)若
,当每公斤蘑菇的出厂价
为多少元时,该工厂的利润
最大,并求最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足an>0,a1=2,且(n+1)an+12=nan2+an(n∈N*).
(Ⅰ)证明:an>1;
(Ⅱ)证明:
+
+…+
<
(n≥2).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设斜率为k(k>0)的直线l与椭圆C:
+
=1交于A、B两点,且OA⊥OB. ![]()
(Ⅰ)求直线l在y轴上的截距(用k表示);
(Ⅱ)求△AOB面积取最大值时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C:
+
=1(a>b>0)的离心率为
,过左焦点任作直线l,交椭圆的上半部分于点M,当l的斜率为
时,|FM|=
.
(1)求椭圆C的方程;
(2)椭圆C上两点A,B关于直线l对称,求△AOB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2
sin(ax﹣
)cos(ax﹣
)+2cos2(ax﹣
)(a>0),且函数的最小正周期为
.
(Ⅰ)求a的值;
(Ⅱ)求f(x)在[0,
]上的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com