(满分13分)已知椭圆中心在原点,焦点在x轴上,离心率
,点
分别为椭圆的左、右焦点,过右焦点
且垂直于长轴的弦长为![]()
⑴ 求椭圆的标准方程;
⑵ 过椭圆的左焦点
作直线
,交椭圆于
两点,若
,求直线
的倾斜角。
科目:高中数学 来源: 题型:
(本小题满分13分)
如图,已知椭圆
的离心率为
,以该椭圆上的点和椭圆的
左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭
圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点
分别 为
和![]()
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线
、
的斜率分别为
、
,证明
;
(Ⅲ)是否存在常数
,使得
恒成立?
若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com