【题目】如图,正三棱锥
,已知
, ![]()
![]()
(1)求此三棱锥内切球的半径.
(2)若
是侧面
上一点,试在面
上过点
画一条与棱
垂直的线段,并说明理由.
【答案】(1)半径为
;(2) 过
作线段
平行于
,则
为所求,证明见解析.
【解析】试题分析; (1)过
作
平面
,垂足为
,由正三棱锥的性质可得
为底面正三角形的中心,,求解三角形可得
,进一步得到
,求得
,再由棱锥体积公式求得正三棱锥
的体积,最后
可求此三棱锥内切球的半径
;
(2)由(1)结合线面垂直的判定可得
,得到
,过
作线段
平行于
,则
为所求.
试题解析;(1)如图,过
作
平面
,垂足为
,
∵
为正三棱锥,∴
为底面正三角形的中心,
连接
并延长交
于
,
则
,且
,
∴
,则
.
∴
;
![]()
(2)过
作线段
平行于
,则
为所求.
理由:∵
为正三棱锥,
过
作
平面
,垂足为
,
∴
为底面正三角形的中心,
则
,
,
∴
平面
,则
,
∵
,
∴
.
科目:高中数学 来源: 题型:
【题目】已知某渔船在渔港O的南偏东60°方向,距离渔港约160海里的B处出现险情,此时在渔港的正上方恰好有一架海事巡逻飞机A接到渔船的求救信号,海事巡逻飞机迅速将情况通知了在C处的渔政船并要求其迅速赶往出事地点施救.若海事巡逻飞机测得渔船B的俯角为68.20°,测得渔政船C的俯角为63.43°,且渔政船位于渔船的北偏东60°方向上.
(Ⅰ)计算渔政船C与渔港O的距离;
(Ⅱ)若渔政船以每小时25海里的速度直线行驶,能否在3小时内赶到出事地点?
(参考数据:sin68.20°≈0.93,tan68.20°≈2.50,shin63.43°≈0.90,tan63.43°≈2.00,
≈3.62,
≈3.61)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》卷中“茭草形段”第一个问题“今有茭草六百八十束,欲令‘落一形’埵(同垛)之.问底子(每层三角形边茭草束数,等价于层数)几何?”中探讨了“垛枳术”中的落一形垛(“落一形”即是指顶上1束,下一层3束,再下一层6束,…,成三角锥的堆垛,故也称三角垛,如图,表示第二层开始的每层茭草束数),则本问题中三角垛底层茭草总束数为 .
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图甲所示,
是梯形
的高,
,
,
,先将梯形
沿
折起如图乙所示的四棱锥
,使得
,点
是线段
上一动点. ![]()
(1)证明:
;
(2)当
时,求
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥
中,
平面
是
的中点,
是
上的点且
为
边
上的高.
![]()
(1)证明:
平面
;
(2)若
,求三棱锥
的体积;
(3)在线段
上是否存在这样一点
,使得
平面
?若存在,说出
点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设抛物线
的准线
与
轴交于椭圆
的右焦点
为
的左焦点.椭圆的离心率为
,抛物线
与椭圆
交于
轴上方一点
,连接
并延长其交
于点
,
为
上一动点,且在
之间移动.
![]()
(1)当
取最小值时,求
和
的方程;
(2)若
的边长恰好是三个连续的自然数,当
面积取最大值时,求面积最大值以及此时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点
,定直线
:
,动圆
过点
,且与直线
相切.
(Ⅰ)求动圆
的圆心轨迹
的方程;
(Ⅱ)过点
的直线与曲线
相交于
,
两点,分别过点
,
作曲线
的切线
,
,两条切线相交于点
,求
外接圆面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com