精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+alnx.
(1)当a=-2e时,求函数f(x)的单调区间和极值.
(2)若函数在[1,4]上是减函数,求实数a的取值范围.
【答案】分析:(1)a=-2e时,f′(x)=2x-=,利用x变化时,f'(x),f(x)的变化情况可求函数f(x)的单调区间和极值;
(2)由g(x)=x2+alnx+,得g′(x)=2x+-,由g'(x)≤0在[1,4]上恒成立,可得a≤-2x2在[1,4]上恒成立.构造函数φ(x)=-2x2,求其最小值即可.
解答:解:(1)函数f(x)的定义域为(0,+∞).
当a=-2e时,f′(x)=2x-=(2分),
当x变化时,f'(x),f(x)的变化情况如下:
x
f'(x)-+
f(x)极小值
∴f(x)的单调递减区间是(0,);单调递增区间是(,+∞).
极小值是f()=0.(6分)
(2)由g(x)=x2+alnx+,得g′(x)=2x+-(8分)
又函数g(x)=x2+alnx+为[1,4]上的单调减函数.
则g'(x)≤0在[1,4]上恒成立,
所以不等式2x+-≤0在[1,4]上恒成立,
即a≤-2x2在[1,4]上恒成立.     (10分)
设φ(x)=-2x2,显然ϕ(x)在[1,4]上为减函数,
所以ϕ(x)的最小值为ϕ(4)=-
∴a的取值范围是a≤-.(12分)
点评:本题考查利用倒数研究函数的单调性,着重考查函数在某点取得极值的条件,考查闭区间上的恒成立问题,突出转化思想与构造函数的思想的运用,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案