【题目】某海产品经销商调查发现,该海产品每售出
吨可获利
万元,每积压
吨则亏损
万元.根据往年的数据,得到年需求量的频率分布直方图如图所示,将频率视为概率.
![]()
(1)请补齐
上的频率分布直方图,并依据该图估计年需求量的平均数;
(2)今年该经销商欲进货
吨,以
(单位:吨,
)表示今年的年需求量,以
(单位:万元)表示今年销售的利润,试将
表示为
的函数解析式;并求今年的年利润不少于
万元的概率.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
的极坐标方程为
,以极点为平面直角坐标系的原点,极轴为
的正半轴,建立平面直角坐标系
.
(1)若曲线
为参数)与曲线
相交于两点
,求
;
(2)若
是曲线
上的动点,且点
的直角坐标为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地随着经济的发展,居民收入逐年增长.该地一建设银行统计连续五年的储蓄存款(年底余额)得到下表:
年份 |
|
|
|
|
|
储蓄存款 (千亿元) |
|
|
|
|
|
为便于计算,工作人员将上表的数据进行了处理(令
,
),得到下表:
时间 |
|
|
|
|
|
储蓄存款 |
|
|
|
|
|
(Ⅰ)求
关于
的线性回归方程;
(Ⅱ)通过(Ⅰ)中的方程,求出
关于
的回归方程;
(Ⅲ)用所求回归方程预测到
年年底,该地储蓄存款额可达多少?
附:线性回归方程
,其中
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知长方体
,直线
与平面
所成角为
垂直
于点
为
的中点.
![]()
(1)求直线
与平面
所成角的正弦值;
(2)线段
上是否存在点
,使得二面角
的余弦值为
?若存在,确定
点位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
(
)的焦点是椭圆
:
(
)的右焦点,且两曲线有公共点![]()
(1)求椭圆
的方程;
(2)椭圆
的左、右顶点分别为
,
,若过点
且斜率不为零的直线
与椭圆
交于
,
两点,已知直线
与
相较于点
,试判断点
是否在一定直线上?若在,请求出定直线的方程;若不在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程是
(
为参数),以该直角坐标系的原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)写出曲线
的普通方程和直线
的直角坐标方程;
(2)设点
,直线
与曲线
相交于
两点,且
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有
六支足球队参加单循环比赛(即任意两支球队只踢一场比赛),第一周的比赛中
,各踢了
场,
各踢了
场,
踢了
场,且
队与
队未踢过,
队与
队也未踢过,则在第一周的比赛中,
队踢的比赛的场数是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
、
,且点
到椭圆
上任意一点的最大距离为3,椭圆
的离心率为
.
(1)求椭圆
的标准方程;
(2)是否存在斜率为
的直线
与以线段
为直径的圆相交于
、
两点,与椭圆相交于
、
,且
?若存在,求出直线
的方程;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com