【题目】设奇函数
上是增函数,且
,则不等式
的解集为( )
A.
B. ![]()
C.
D. ![]()
【答案】D
【解析】
本题考查的是函数的奇偶性和单调性以及解不等式的综合类问题.在解答时,首先要结合奇偶性和单调性对不等式进行转化变形,将问题转化为解不等式:2xf(x)<0,
然后再分类讨论即可获得问题的解答.
:∵函数f(x)是奇函数,函数f(x)在(0,+∞)上是增函数,
∴它在(-∞,0)上也是增函数.∵f(-x)=-f(x),
∴f(-1)=f(1)=0.
不等式x[f(x)-f(-x)]<0可化为2xf(x)<0,
即xf(x)<0,
∴当x<0时,
可得f(x)>0=f(-1),∴x>-1,
∴-1<x<0;
当x>0时,可得f(x)<0=f(1),
∴x<1,∴0<x<1.
综上,不等式x[f(x)-f(-x)]<0的解集为{x|-1<x<0,或0<x<1}.
故选:D.
科目:高中数学 来源: 题型:
【题目】某服装厂生产一种服装,每件服装成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,规定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低
元,根据市场调查,销售商一次订购不会超过600件.
(1)设一次订购
件,服装的实际出厂单价为
元,写出函数
的表达式;
(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知AB是⊙O的直径,直线AF交⊙O于F(不与B重合),直线EC与⊙O相切于C,交AB于E,连接AC,且∠OAC=∠CAF,求证: ![]()
(1)AF⊥EC;
(2)若AE=5,AF=2,求AC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在
中,
所对的边分别为
,且
.
(1)求角
的大小;
(2)若
,
,
为
的中点,求
的长.
【答案】(1)
;(2)
.
【解析】试题分析:(1)由已知,利用正弦定理可得
a2=
b2+
c2-2b,再利用余弦定理即可得出cosA,结合A的范围即可得解A的值.
(2)△ABC中,先由正弦定理求得AC的值,再由余弦定理求得AB的值,△ABD中,由余弦定理求得BD的值.
试题解析:
(1)因为
asin A=(
b-c)sin B+(
c-b)·sin C,
由正弦定理得
a2=(
b-c)b+(
c-b)c,
整理得
a2=![]()
c2-2bc,
由余弦定理得cos A=
=
=
,
因为A∈(0,π),所以A=
.
(2)由cos B=
,得sin B=
=
=
,
所以cos C=cos[π-(A+B)]=-cos(A+B)=-
=-
,
由正弦定理得b=
=
=2,
所以CD=
AC=1,
在△BCD中,由余弦定理得BD2=(
)2+12-2×1×
×
=13,
所以BD=
.
【题型】解答题
【结束】
21
【题目】已知函数
在
处的切线经过点![]()
(1)讨论函数
的单调性;
(2)若不等式
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】①在同一坐标系中,
与
的图象关于
轴对称;
②
是奇函数;
③
的图象关于
成中心对称;
④
的最大值为
;
⑤
的单调增区间:
。
以上五个判断正确有____________________(写上所有正确判断的序号)。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
给出下列四个命题:
①c = 0时,
是奇函数; ②
时,方程
只有一个实根;
③
的图象关于点(0 , c)对称; ④方程
至多3个实根.
其中正确的命题个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
、
是椭圆
的右顶点与上顶点,直线
与椭圆相交于
、
两点.
![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)当四边形
面积取最大值时,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ex(ax2﹣x﹣1)(a∈R).
(1)若函数f(x)在R上单调递减,求a的取值范围
(2)当a>0时,求f(|sinx|)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的图像可以由y=cos2x的图像先纵坐标不变横坐标伸长到原来的2倍,再横坐标不变纵坐标伸长到原来的2倍,最后向右平移
个单位而得到.
⑴求f(x)的解析式与最小正周期;
⑵求f(x)在x∈(0,π)上的值域与单调性.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com