设
是定义在实数
上的函数,
是定义在正整数
上的函数,同时满足下列条件:
(1)任意
,有
,当
时,
且
;
(2)
;
(3)
,![]()
试求:(1)证明:任意
,
,都有
;
(2)是否存在正整数
,使得
是25的倍数,若存在,求出所有自然数
;若不存在说明理由. (阶乘定义:
)
科目:高中数学 来源: 题型:
(本小题分A,B类,满分12分,任选一类,若两类都选,以A类记分)
(A类)已知函数
的图象恒过定点
,且点
又在函
数
的图象.
(1)求实数
的值; (2)解不等式![]()
;
(3)
有两个不等实根时,求
的取值范围.
(B类)设
是定义在
上的函数,对任意
,恒有
.
⑴求
的值; ⑵求证:
为奇函数;
⑶若函数
是
上的增函数,已知
且
,求
的
取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com