精英家教网 > 高中数学 > 题目详情

已知数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q>0).
(1)设bn=an+1-an(n∈N*),证明:数列{bn}是等比数列;
(2)试求数列{an}的通项公式;
(3)若对任意大于1的正整数n,均有an>bn,求q的取值范围.

解:(1)由an+1=(1+q)an-qan-1(n≥2,q≠0)得,an+1-an=q(an-an-1),即bn=qbn-1(n≥2).
又b1=a2-a1=1,q≠0,bn≠0.
所以,{bn}是首项为1,公比为q的等比数列
(2)由(1)有,bn=qn-1
又an-a1=(a2-a1)+(a3-a2)+…+(an-an-1)=1+q+…+qn-2(n≥2)
所以,当n≥2时,
上式对n=1显然成立.故有
(3)q=1符合题意;
若q≠1,


解得:q∈(0,1)∪(1,2).
综上,q∈(0,2)..
分析:(1)将已知递推关系变形,利用等比数列的定义,证得数列{bn}是等比数列.
(2)先利用等比数列的通项公式求出bn,再用叠加法求出数列{an}的通项公式.
(3)将两个数列的通项代入不等式得到关于d的不等式,将不等式因式分解,求出d的范围.
点评:本题考查证明一个数列是等比数列的方法是利用等比数列的定义;利用等比数列的前n项和的公式时,一定注意公比为1时要分类讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案