精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象过点和点.

1)求函数的最大值与最小值;

2)将函数的图象向左平移个单位后,得到函数的图象;已知点,若函数的图象上存在点,使得,求函数图象的对称中心.

【答案】1的最大值为2,最小值为;(2.

【解析】

1)由行列式运算求出,由函数图象过两点,求出,得函数解析式,化函数式为一个角的一个三角函数式,可求得最值;

2)由图象变换写出表达式,它的最大值是2,因此要满足条件,只有图象上,由此可求得,结合余弦函数的性质可求得对称中心.

1)易知,则由条件,得

解得 .

故函数的最大值为2,最小值为

2)由(1)可知: .

于是,当且仅当的图象上时满足条件.

. ,得

. ,得

于是,函数图象的对称中心为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列中,的前项和为,且满足.

1)试求数列的通项公式;

2)令的前项和,证明:

3)证明:对任意给定的,均存在,使得时,(2)中的恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列 的前项和为,对一切,点都在函数的图象上.

1)求,归纳数列的通项公式(不必证明);

2)将数列依次按1项、2项、3项、4项循环地分为 ,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值;

3)设为数列的前项积,若不等式对一切都成立,其中,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业在“精准扶贫”行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆运送这批水果的费用最少为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】教材曾有介绍:圆上的点处的切线方程为。我们将其结论推广:椭圆上的点处的切线方程为,在解本题时可以直接应用。已知,直线与椭圆有且只有一个公共点.

(1)求的值;

(2)设为坐标原点,过椭圆上的两点分别作该椭圆的两条切线,且交于点。当变化时,求面积的最大值;

(3)在(2)的条件下,经过点作直线与该椭圆交于两点,在线段上存在点,使成立,试问:点是否在直线上,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的两个焦点为P为该双曲线上一点,满足P到坐标原点O的距离为d,且,则________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且.

1)计算,并求数列的通项公式;

2)若数列满足,求证:数列是等比数列;

3)由数列的项组成一个新数列,设为数列的前项和,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在矩形中,为垂足,上,将沿折起,使点到点的位置,连,且,如图2.

1)求证:平面

2)求钝二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系动点到定点的距离与它到直线的距离相等.

1)求动点的轨迹的方程;

2)设动直线与曲线相切于点与直线相交于点

证明:以为直径的圆恒过轴上某定点.

查看答案和解析>>

同步练习册答案