如图,在以点O为圆心,AB为直径的半圆中,D为半圆弧的中点, P为半圆弧上一点,且AB=4,∠POB=30°,双曲线C以A,B为焦点且经过点P.
(Ⅰ)建立适当的平面直角坐标系,求双曲线C的方程;
(Ⅱ)设过点D的直线l与双曲线C相交于不同两点E、F,
若△OEF的面积不小于2
,求直线l的斜率的取值范围.
(Ⅰ)方法一:以O为原点,AB、OD所在直线分别
为x轴、y轴建立平面直角坐标系,则
点A(-2,0),B(2,0),P(
,1). (2分)
设双曲线实半轴长为a,虚半轴长为b,半焦距为c,则
2a=|PA|-|PB|=
,2c=|AB|=4.
(3分)
所以a=
,c=2,从而b2=c2-a2=2.
(4分)
故双曲线C的方程是
.
(5分)
方法二:以O为原点,AB、OD所在直线分别为x轴、y轴建立平面直角坐标系,则
点A(-2,0),B(2,0),P(
,1).
(2分)
设双曲线C的方程为
>0,b>0),则
.
(3分)
解得a2=b2=2,故双曲线C的方程是
(5分)
(Ⅱ)据题意可设直线l的方程为y=kx+2,代入双曲线C的方程得,
,即
(1-k2)x2-4kx-6=0. (6分)
因为直线l与双曲线C相交于不同两点E、F,则
![]()
即
(7分)
设点E(x1,y1),F(x2,y2),则x1+x2=
.
(8分)
所以|EF|=![]()
=
(9分)
又原点O到直线l的距离d=
.
(10分)
所以S△DEF=
(11分)因为S△OEF
,则
(12分)
综上分析,直线l的斜率的取值范围是[-
,-1)
(-1,1)
(1,
]. (13分)
科目:高中数学 来源: 题型:
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在以点O为圆心,AB为直径的半圆中,D为半圆弧的中点, P为半圆弧上一点,且AB=4,∠POB=30°,双曲线C以A,B为焦点且经过点P.
(Ⅰ)建立适当的平面直角坐标系,求双曲线C的方程;
(Ⅱ)设过点D的直线l与双曲线C相交于不同两点E、F,
若△OEF的面积不小于2
,求直线l的斜率的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源:2009-2010学年湖南师大附中高三(上)第三次月考数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2008年普通高等学校招生全国统一考试理科数学(湖北卷) 题型:解答题
(本小题满分13分)
如图,在以点O为圆心,|AB|=4为直径的半圆ADB中,OD⊥AB,P是半圆弧上一点,
∠POB=30°,曲线C是满足||MA|-|MB||为定值的动点M的轨迹,且曲线C过点P。
(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)设过点D的直线l与曲线C相交于不同的两点E、F。若△OEF的面积不小于2
,求直线l斜率的取值范围。
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com