【题目】在直角坐标系xOy中,直线l1的参数方程为
,(t为参数),直线l2的参数方程为
,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣
=0,M为l3与C的交点,求M的极径.
【答案】
(1)解:∵直线l1的参数方程为
,(t为参数),
∴消掉参数t得:直线l1的普通方程为:y=k(x﹣2)①;
又直线l2的参数方程为
,(m为参数),
同理可得,直线l2的普通方程为:x=﹣2+ky②;
联立①②,消去k得:x2﹣y2=4,即C的普通方程为x2﹣y2=4(x≠±2)
(2)解:∵l3的极坐标方程为ρ(cosθ+sinθ)﹣
=0,
∴其普通方程为:x+y﹣
=0,
联立
得:
,
∴ρ2=x2+y2=
+
=5.
∴l3与C的交点M的极径为ρ= ![]()
【解析】解:(1)分别消掉参数t与m可得直线l1与直线l2的普通方程为y=k(x﹣2)①与x=﹣2+ky②;联立①②,消去k可得C的普通方程为x2﹣y2=4;(2)将l3的极坐标方程为ρ(cosθ+sinθ)﹣
=0化为普通方程:x+y﹣
=0,再与曲线C的方程联立,可得
,即可求得l3与C的交点M的极径为ρ=
.
科目:高中数学 来源: 题型:
【题目】如图,已知在正四棱锥
中,
为侧棱
的中点, 连接
相交于点
。
(1)证明:
;
(2)证明:
;
(3)设
,若质点从点
沿平面
与平面
的表 面运动到点
的最短路径恰好经过点
,求正四棱锥
的体积。
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数
的定义域为D,若存在闭区间
,使得函数
同时满足:
(1)
在
内是单调函数;
(2)
在
上的值域为
,则称区间
为
的“
倍值区间”.
下列函数中存在“3倍值区间”的有_____.
①
;②
;③
;④
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心在原点,一个焦点F(﹣2,0),且长轴长与短轴长的比是
.
(1)求椭圆C的方程;
(2)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点.当
最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
:
上的点
关于点
的对称点为
,记
的轨迹为
.
(1)求
的轨迹方程;
(2)设过点
的直线
与
交于
,
两点,试问:是否存在直线
,使以
为直径的圆经过原点?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,随着我市经济的快速发展,政府对民生也越来越关注. 市区现有一块近似正三角形土地ABC(如图所示),其边长为2百米,为了满足市民的休闲需求,市政府拟在三个顶点处分别修建扇形广场,即扇形DBE,DAG和ECF,其中
、
与
分别相切于点D、E,且
与
无重叠,剩余部分(阴影部分)种植草坪. 设BD长为x(单位:百米),草坪面积为S(单位:百米2).
(1)试用x分别表示扇形DAG和DBE的面积,并写出x的取值范围;
(2)当x为何值时,草坪面积最大?并求出最大面积.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三棱锥A﹣BCD的所有棱长均为6,点P在AC上,且AP=2PC,过P作四面体的截面,使截面平行于直线AB和CD,则该截面的周长为( )
A.16
B.12
C.10
D.8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com