精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,不等式
x+y≥0
x-y≥0
x≤a
(a为常数)表示的平面区域的面积为8,则
x+y+2
x+3
的最小值为
6-4
2
6-4
2
分析:本题属于线性规划中的延伸题,先根据面积为8求出a值,又z=
x+y+2
x+3
=1+
y-1
x+3
,对于可行域不要求线性目标函数的最值,而是求可行域内的点与原点(-3,1)构成的直线的斜率范围.
解答:解:满足约束条件
x+y≥0
x-y≥0
的可行域如下图所示,
若可行域的面积为8,则a=2
2

又z=
x+y+2
x+3
=1+
y-1
x+3
,其中
y-1
x+3
的几何意义是可行域内的点与点P(-3,1)构成的直线PQ的斜率问题.
当Q取得点A(2
2
,-2
2
)时,
y-1
x+3
取最小值为
-2
2
-1
2
2
+3
=5-4
2

x+y+2
x+3
的最小值为6-4
2

故答案为:6-4
2
点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案