精英家教网 > 高中数学 > 题目详情

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.

一次购物量

1至4件

5至8件

9至12件

13至16件

17件及以上

顾客数(人)

x

30

25

y

10

结算时间(分钟/人)

1

1.5

2

2.5

3

已知这100位顾客中一次购物量超过8件的顾客占55%.

(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;

(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.

(注:将频率视为概率)

 

【答案】

(Ⅰ)x=15,y=20.

X

1

1.5

2

2.5

3

P

E(X)=1.9;(Ⅱ)

【解析】

试题分析:(Ⅰ)根据总人数有100人,则,由100位顾客中一次购物量超过8件的顾客占55%,则知.根据这两式得x=15,y=20,由表格可得X的可以取值为:1,1.5,2,2.5,3;该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率,即可得到分布列与期望.

(Ⅱ)由于该客到达收银台时前面恰有2位顾客需结算,则该顾客结算前的等候时间不超过2.5分钟的情况为(1、1),(1、1.5),(1.5、1)三种情况,则按照各顾客的结算相互独立,有

P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=1.5)+P(X1=1.5)×P(X2=1)

×××

试题解析:(Ⅰ)由已知,得25+y+10=55,x+30=45,所以x=15,y=20.

该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得

P(X=1)=,P(X=1.5)=,P(X=2)=

P(X=2.5)=,P(X=3)=

X的分布列为

X

1

1.5

2

2.5

3

P

X的数学期望为

E(X)=1×+1.5×+2×+2.5×+3×=1.9.

(Ⅱ)记A为事件“该顾客结算前的等候时间不超过2.5分钟”,Xi(i=1,2)为该顾客前面第i位顾客的结算时间,则

P(A)=P(X1=1且X2=1)+P(X1=1且X2=1.5)+P(X1=1.5且X2=1).

由于各顾客的结算相互独立,且X1,X2的分布列都与X的分布列相同,所以

P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=1.5)+P(X1=1.5)×P(X2=1)

×××

故该顾客结算前的等候时间不超过2.5分钟的概率为

考点:1.离散型随机变量的分布列与数学期望;2.以及相互独立事件的概率的求法.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量 1至4件 5至8件 9至12件 13至16件 17件以上
顾客数(人) x 30 25 y 10
结算时间(分钟/人 1 1.5 2 2.5 3
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(Ⅱ)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次性购物量 1至4件 5 至8件 9至12件 13至16件 17件及以上
顾客数(人) x 30 25 y 10
结算时间(分钟/人) 1 1.5 2 2.5 3
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;
(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的50位顾客的相关数据,如下表所示:
一次购物量n(件) 1≤n≤3 4≤n≤6 7≤n≤9 10≤n≤12 n≥13
顾客数(人) x 20 10 5 y
结算时间(分钟/人) 0.5 1 1.5 2 2.5
已知这50位顾客中一次购物量少于10件的顾客占80%.
(1)确定x与y的值;
(2)若将频率视为概率,求顾客一次购物的结算时间X的分布列与数学期望;
(3)在(2)的条件下,若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2分钟的概率.

查看答案和解析>>

科目:高中数学 来源:2014届广东省广州市越秀区高三上学期摸底考试理科数学试卷(解析版) 题型:解答题

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的50位顾客的相关数据,如下表所示:

一次购物量(件)

1≤n≤3

4≤n≤6

7≤n≤9

10≤n≤12

n≥13

顾客数(人)

20

10

5

结算时间(分钟/人)

0.5

1

1.5

2

2.5

已知这50位顾客中一次购物量少于10件的顾客占80%.

(1)确定的值;

(2)若将频率视为概率,求顾客一次购物的结算时间的分布列与数学期望;

(3)在(2)的条件下,若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2分钟的概率.

 

查看答案和解析>>

科目:高中数学 来源:2014届福建高二下第一次月考理科数学试卷(解析版) 题型:解答题

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.

一次购物量

1至4件

5至8件

9至12件

13至16件

17件及以上

顾客数(人)

30

25

10

结算时间(分钟/人)

1

1.5

2

2.5

3

已知这100位顾客中的一次购物量超过8件的顾客占55%.

(1)确定的值,并求顾客一次购物的结算时间的分布列与数学期望;

(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过分钟的概率.(注:将频率视为概率)

 

查看答案和解析>>

同步练习册答案