(本小题满分15分)
如图,已知椭圆
过点
,离心率为
,左、右焦点分别为
、
。点
为直线
上且不在
轴上的任意一点,直线
和
与椭圆的交点分别为
、
和
、
,
为坐标原点.
(I)求椭圆的标准方程;
(II)设直线
、
的斜线分别为
、
.
(i)证明:
;
(ii)问直线
上是否存在点
,使得直线
、
、
、
的斜率
、
、
、
满足
?若存在,求出所有满足条件的点
的坐标;若不存在,说明理由.
(Ⅰ)解:因为椭圆过点(1,
),
,所以
,
,
又
, 所以
,
,
故所求椭圆方程为![]()
(Ⅱ)(i)解:方法一:由于
、
,
、
的斜率分别为
、
,且点P不在
轴上,所以![]()
![]()
,
,
,又直线
、
的方程分别为
,
,联立方程解得
,所以P(
,
),由于点P在直线
上,所以
,因此
即
,结论成立。
方法二:设
,则
,
因为点P不在
轴上,所以![]()
又
所以
因此结论成立。
(ii)解:设
,
,
,
,
联立直线
与椭圆的方程得
,化简得
,
因此
,
由于OA,OB的斜率存在,所以
,
,因此
,1因此![]()
![]()
。
相似地可以得到
,
,因此
,1,![]()
故![]()
![]()
![]()
若
,须有
或
,
①当
时,结合(i)的结论,可得
,所以解得点P的坐标为(0,2);
②当
时,结合(i)的结论,解得
或
(此时
,不满足
,舍去),此时直线CD的方程为
,联立方程
得
,
。
因此P(
)。
综上所述,满足条件的点P的坐标分别为(0,2),(
)。
科目:高中数学 来源:2012-2013学年福建省高三上学期期中理科数学试卷(解析版) 题型:解答题
(本小题满分15分)
已知函数![]()
(Ⅰ)求函数
的单调区间;
(Ⅱ)若
,试分别解答以下两小题.
(ⅰ)若不等式
对任意的
恒成立,求实数
的取值范围;
(ⅱ)若
是两个不相等的正数,且
,求证:
.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省高三下学期3月联考理科数学 题型:解答题
(本小题满分15分).
已知
、
分别为椭圆
:
的
上、下焦点,其中
也是抛物线
:
的焦点,
点
是
与
在第二象限的交点,且
。
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点P(1,3)和圆
:
,过点P的动直线
与圆
相交于不同的两点A,B,在线段AB取一点Q,满足:
,
(
且
)。求证:点Q总在某定直线上。
![]()
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:解答题
(本小题满分15分)
如图已知,椭圆
的左、右焦点分别为
、
,过
的直线
与椭圆相交于A、B两点。
(Ⅰ)若
,且
,求椭圆的离心率;
(Ⅱ)若
求
的最大值和最小值。
![]()
查看答案和解析>>
科目:高中数学 来源:2014届浙江省宁波市高一上学期期末考试数学 题型:解答题
(本小题满分15分)若函数
在定义域内存在区间
,满足
在
上的值域为
,则称这样的函数
为“优美函数”.
(Ⅰ)判断函数
是否为“优美函数”?若是,求出
;若不是,说明理由;
(Ⅱ)若函数
为“优美函数”,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011年江苏省高二下学期期中考试理数 题型:解答题
(本小题满分15分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题.求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第1次抽到理科题的条件下,第2次抽到文科题的概率
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com