已知
在
处取得极值,且在点
处的切线斜率为
.
⑴求
的单调增区间;
⑵若关于
的方程
在区间
上恰有两个不相等的实数根,求实数
的取值范围.
(1)
;(2)![]()
解析试题分析:(1)要求高次函数的单调增区间,只能使用导数法,令
科目:高中数学
来源:
题型:解答题
设函数f(x)=x2-mlnx,g(x)=x2-x+a.
科目:高中数学
来源:
题型:解答题
已知函数f(x)=(x-a)2(x-b)(a,b∈R,a<b).
科目:高中数学
来源:
题型:解答题
已知
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
,解得其增区间.所以得确定其函数解析式.根据导数的几何意义知
,根据在
处取得极值,可知
,解方程组可得
解析式.
(2)构造新函数
,根据其在区间
上有两个不等的实数根,可知新函数在该区间内与
轴有两个不同的交点.根据新函数在该区间内的单调性以及极值建立关系式,解决;
试题解析:⑴
1分;由题意,得![]()
3分
,由
得
;
的单调增区间是
5分
⑵由⑴知
;
;
令
;
则
,由
得
7分;
当
变化时,
的变化情况如下表:![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
0 + ![]()
![]()
![]()
![]()
极小值 ![]()
![]()
![]()
新课标同步训练系列答案
一线名师口算应用题天天练一本全系列答案
会考通关系列答案
本土精编系列答案
课时练优化测试卷系列答案
桂壮红皮书应用题卡系列答案
快乐过暑假系列答案
同步练习册全优达标测试卷系列答案
英才教程探究习案课时精练系列答案
小学学习好帮手系列答案
(1)当a=0时,f(x)≥g(x)在(1,+∞),上恒成立,求实数m的取值范围;
(2)当m=2时,若函数h(x)=f(x)-g(x)在[1,3]上恰有两个不同的零点,求实数a的取值范围.
(1)当a=1,b=2时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2.证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后构成等差数列,并求x4.
,
,且直线
与曲线
相切.
(1)若对
内的一切实数
,不等式
恒成立,求实数
的取值范围;
(2)当
时,求最大的正整数
,使得对
(
是自然对数的底数)内的任意
个实数
都有
成立;
(3)求证:
.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号