【题目】如图,
平面
,
,
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求直线
与平面
所成角的正弦值;
(Ⅲ)若二面角
的余弦值为
,求线段
的长.
【答案】(Ⅰ)见证明;(Ⅱ)
(Ⅲ)![]()
【解析】
首先利用几何体的特征建立空间直角坐标系
(Ⅰ)利用直线BF的方向向量和平面ADE的法向量的关系即可证明线面平行;
(Ⅱ)分别求得直线CE的方向向量和平面BDE的法向量,然后求解线面角的正弦值即可;
(Ⅲ)首先确定两个半平面的法向量,然后利用二面角的余弦值计算公式得到关于CF长度的方程,解方程可得CF的长度.
依题意,可以建立以A为原点,分别以
的方向为x轴,y轴,z轴正方向的空间直角坐标系(如图),
![]()
可得
.
设
,则
.
(Ⅰ)依题意,
是平面ADE的法向量,
又
,可得
,
又因为直线
平面
,所以
平面
.
(Ⅱ)依题意,
,
设
为平面BDE的法向量,
则
,即
,
不妨令z=1,可得
,
因此有
.
所以,直线
与平面
所成角的正弦值为
.
(Ⅲ)设
为平面BDF的法向量,则
,即
.
不妨令y=1,可得
.
由题意,有
,解得
.
经检验,符合题意
所以,线段
的长为
.
科目:高中数学 来源: 题型:
【题目】设数列
共有
项,记该数列前
项
,
,…,
中的最大项为
,该数列后
项
,
,…,
中的最小项为
,
(
1,2,3,…,
).
(1)若数列
的通项公式为
,求数列
的通项公式;
(2)若数列
是单调数列,且满足
,
,求数列
的通项公式;
(3)试构造一个数列
,满足
,其中
是公差不为零的等差数列,
是等比数列,使得对于任意给定的正整数
,数列
都是单调递增的,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,某企业每年消耗电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网,安装这种供电设备的工本费(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为0.5.为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业每年消耗的电费
(单位:万元)与安装的这种太阳能电池板的面积
(单位:平方米)之间的函数关系是
为常数).记
为该村安装这种太阳能供电设备的费用与该村15年共将消耗的电费之和.
(1)试解释
的实际意义,并建立
关于
的函数关系式;
(2)当
为多少平方米时,
取得最小值?最小值是多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若
,求
的单调区间;
(2)若关于
的方程
有四个不同的解
,
,
,
,求实数
,
应满足的条件;
(3)在(2)条件下,若
,
,
,
成等比数列,求
用
表示.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是以BC为底边的等腰三角形,DA,EB都垂直于平面ABC,且线段DA的长度大于线段EB的长度,M是BC的中点,N是ED的中点.
![]()
求证:(1)
平面EBC;
(2)
平面DAC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,底面
为矩形,侧面
为正三角形,
,
,平面
平面
,
为棱
上一点(不与
、
重合),平面
交棱
于点
.
![]()
(1)求证:
;
(2)若二面角
的余弦值为
,求点
到平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(
)的焦距为
,且右焦点F与短轴的两个端点组成一个正三角形.若直线l与椭圆C交于
、
,且在椭圆C上存在点M,使得:
(其中O为坐标原点),则称直线l具有性质H.
(1)求椭圆C的方程;
(2)若直线l垂直于x轴,且具有性质H,求直线l的方程;
(3)求证:在椭圆C上不存在三个不同的点P、Q、R,使得直线
、
、
都具有性质H.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com