【题目】在合作学习小组的一次活动中,甲、乙、丙、丁、戊五位同学被随机地分配承担
,
,
,
四项不同的任务,每个同学只能承担一项任务.
(1)若每项任务至少安排一位同学承担,求甲、乙两人不同时承担同一项任务的概率;
(2)设这五位同学中承担任务
的人数为随机变量
,求
的分布列及数学期望
.
科目:高中数学 来源: 题型:
【题目】菜市房管局为了了解该市市民2018年1月至2019年1月期间购买二手房情况,首先随机抽样其中200名购房者,并对其购房面积
(单位:平方米,
)进行了一次调查统计,制成了如图1所示的频率分布南方匿,接着调查了该市2018年1月﹣2019年1月期间当月在售二手房均价
(单位:万元/平方米),制成了如图2所示的散点图(图中月份代码1﹣13分别对应2018年1月至2019年1月).
![]()
(1)试估计该市市民的平均购房面积
.
(2)现采用分层抽样的方法从购房耐积位于
的40位市民中随机取4人,再从这4人中随机抽取2人,求这2人的购房面积恰好有一人在
的概率.
(3)根据散点图选择
和
两个模型进行拟合,经过数据处理得到两个回归方程,分别为
和
,并得到一些统计量的值,如表所示:
|
| |
|
|
|
|
| |
请利用相关指数
判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测2019年6月份的二手房购房均价(精确到
参考数据:
,
,
,
,
,
,
,
.参考公式:相关指数
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆C:
(a>b>0)经过点(0,
),点F是椭圆的右焦点,点F到左顶点的距离和到右准线的距离相等.过点F的直线
交椭圆于M,N两点.
![]()
(1)求椭圆C的标准方程;
(2)当MF=2FN时,求直线
的方程;
(3)若直线
上存在点P满足PM·PN=PF2,且点P在椭圆外,证明:点P在定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确命题的个数是( )
①对于命题
,使得
,则
,均有
;
②命题“已知x,
,若
,则
或
”是真命题;
③设
,
是非零向量,则“
”是“
”的必要不充分条件;
④
是直线
与直线
互相垂直的充要条件.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某隧道的剖面图是由半圆及矩形
组成,交通部门拟在隧道顶部安装通风设备(视作点
),为了固定该设备,计划除从隧道最高点
处使用钢管垂直向下吊装以外,再在两侧自
两点分别使用钢管支撑.已知道路宽
,设备要求安装在半圆内部,所使用的钢管总长度为
.
![]()
(1)①设
,将
表示为关于
的函数;
②设
,将
表示为关于
的函数;
(2)请选用(1)中的一个函数关系式,说明如何设计,所用的钢管材料最省?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A,B分别为双曲线
(a>0,b>0)的左、右顶点,双曲线的实轴长为4
,焦点到渐近线的距离为
.
(1)求双曲线的方程;
(2)已知直线y=
x-2与双曲线的右支交于M,N两点,且在双曲线的右支上存在点D,使
,求t的值及点D的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,数轴
,
的交点为
,夹角为
,与
轴、
轴正向同向的单位向量分别是
,
.由平面向量基本定理,对于平面内的任一向量
,存在唯一的有序实数对
,使得
,我们把
叫做点
在斜坐标系
中的坐标(以下各点的坐标都指在斜坐标系
中的坐标).
![]()
(1)若
,
为单位向量,且
与
的夹角为
,求点
的坐标;
(2)若
,点
的坐标为
,求向量
与
的夹角;
(3)若
,求过点
的直线
的方程,使得原点
到直线
的距离最大.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com