【题目】函数![]()
在
上的最大值为
,
.
(1)若点
在
的图象上,求函数
图象的对称中心;
(2)将函数
的图象向右平移
个单位,再将所得的图象纵坐标不变,横坐标缩小到原来的
,得函数
的图象,若
在
上为增函数,求
的最大值.
科目:高中数学 来源: 题型:
【题目】已知函数
的最大值为
,
的图像关于
轴对称.
(1)求实数
,
的值.
(2)设
,则是否存在区间
,使得函数
在区间
上的值域为
?若存在,求实数
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,且当x≥0时,f(x)=x2﹣2x.
(1)求f(0)及f(f(1))的值;
(2)求函数f(x)的解析式;
(3)若关于x的方程f(x)﹣m=0有四个不同的实数解,求实数m的取值范围,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题
:函数
且
,命题
:集合
,
且
.
(1)若命题
中有且仅有一个为真命题,求实数
的取值范围;
(2)设
皆为真命题时,
的取值范围为集合
,已知
,若
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,且函数
奇函数而非偶函数.
(1)写出
的单调性(不必证明);
(2)当
时,
的取值范围恰为
,求
与
的值;
(3)设
是否存在实数
使得函数
有零点?若存在,求出实数
的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】呼和浩特市地铁一号线于2019年12月29日开始正式运营有关部门通过价格听证会,拟定地铁票价后又进行了一次调查.调查随机抽查了50人,他们的月收入情况与对地铁票价格态度如下表:
月收入(单位:百元) |
|
|
|
|
|
|
认为票价合理的人数 | 1 | 2 | 3 | 5 | 3 | 4 |
认为票价偏高的人数 | 4 | 8 | 12 | 5 | 2 | 1 |
(1)若以区间的中点值作为月收入在该区间内人的人均月收入求参与调查的人员中“认为票价合理者”的月平均收入与“认为票价偏高者”的月平均收入的差是多少(结果保留2位小数);
(2)由以上统计数据填写下面
列联表分析是否有
的把握认为“月收入以5500元为分界点对地铁票价的态度有差异”
月收入不低于5500元人数 | 月收入低于5500元人数 | 合计 | |
认为票价偏高者 | |||
认为票价合理者 | |||
合计 |
附:![]()
| 0.05 | 0.01 |
| 3.841 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com