精英家教网 > 高中数学 > 题目详情
已知双曲线,F1,F2分别为它的左、右焦点,P为双曲线上一点,且|PF1|,|F1F2|,|PF2|成等差数列,则△PF1F2的面积为(    ).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1
满足条件:(1)焦点为F1(-5,0),F2(5,0);(2)离心率为
5
3
,求得双曲线C的方程为f(x,y)=0.若去掉条件(2),另加一个条件求得双曲线C的方程仍为f(x,y)=0,则下列四个条件中,符合添加的条件可以是(  )
①双曲线C:
x2
a2
-
y2
b2
=1
上的任意点P都满足||PF1|-|PF2||=6;
②双曲线C:
x2
a2
-
y2
b2
=1
的渐近线方程为4x±3y=0;
③双曲线C:
x2
a2
-
y2
b2
=1
的焦距为10;
④双曲线C:
x2
a2
-
y2
b2
=1
的焦点到渐近线的距离为4.
A、①③B、②③C、①④D、①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的两个焦点分别为F1(-2,0),F2(2,0),焦点到渐近线的距离为
2

(1)求双曲线C的方程;
(2)记O为坐标原点,过点M(0,2)的直线l交双曲线C于E、F两点,若△EOF的面积为2
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1 (a>0,b>0)
的两个焦点为F1(-2,0),F2(2,0),点(3,
7
)
在双曲线C上.
(1)求双曲线C的方程;
(2)已知Q(0,2),P为双曲线C上的动点,点M满足
QM
=
MP
,求动点M的轨迹方程;
(3)过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,记O为坐标原点,若△OEF的面积为2
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
4
-
y2
b2
=1(b∈N*) 的两个焦点为F1、F2,P是双曲线上的一点,且满足|PF1|-|PF2|=|F1F2|2,|PF2|<4,
(I)求b的值;
(II)抛物线y2=2px(p>0)的焦点F与该双曲线的右顶点重合,斜率为1的直线经过点F与该抛物线交于A、B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的两个焦点分别为F1(-2,0),F2(2,0),点P(3,
7
)
在双曲线上.
(1)求双曲线的方程;
(2)过Q(0,2)的直线l与双曲线交于不同的两点E、F,若△OEF的面积为2
2
,O为坐标原点,求直线l的方程.

查看答案和解析>>

同步练习册答案