设
均为正数,且![]()
证明:(1)
;
(2)
.
科目:高中数学 来源: 题型:解答题
图1是某斜拉式大桥图片,为了了解桥的一些结构情况,学校数学兴趣小组将大桥的结构进行了简化,取其部分可抽象成图2所示的模型,其中桥塔
、
与桥面
垂直,通过测量得知
,
,当
为
中点时,
.
(1)求
的长;
(2)试问
在线段
的何处时,
达到最大.![]()
![]()
|
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某造纸厂拟建一座平面图形为矩形且面积为162m2的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/m2,中间两道隔墙建造单价为248元/m2,池底建造单价为80元/m2,水池所有墙的厚度忽略不计.
(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;
(2)若由于地形限制,该池的长和宽都不能超过16m,试设计污水池的长和宽,使总造价最低,并求出最低总造价.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
观察下列两个结论:
(Ⅰ)若
,且
,则
;
(Ⅱ)若
,且
,则
;
先证明结论(Ⅱ),再类比(Ⅰ)(Ⅱ)结论,请你写出一个关于
个正数
的结论?(写出结论,不必证明。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com