精英家教网 > 高中数学 > 题目详情

【题目】如图所示的多面体中,四边形是边长为2的正方形,平面.

(1)设BDAC的交点为O,求证:平面

(2)求二面角的正弦值.

【答案】(1)证明见解析;(2)

【解析】

1)根据题意,推导出,结合线面垂直的判定定理证得

2)以为原点,方向建立空间直角坐标系,利用面的法向量所成角的余弦值求得二面角的余弦值,之后应用平方关系求得正弦值,得到结果.

(1) 证明:由题意可知:

从而,又中点,

,在中,

(2),且

如图以为原点,方向建立空间直角坐标系,

从而,0,,0,,2,,2,,1,

由(1)可知,1,是面的一个法向量,

为面的一个法向量,

,令

为二面角的平面角,

二面角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱锥中,分别是线段的中点,底面是正三角形,延长到点,使得.

1为线段上确定一点,当平面时,求的值;

2)当平面,且时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为θ为参数),以原点为极点,x轴非负半轴为极轴,建立极坐标系,曲线C2的极坐标方程为

1)求曲线C1的极坐标方程以及曲线C2的直角坐标方程;

2)若直线lykx与曲线C1、曲线C2在第一象限交于PQ,且|OQ||PQ|,点M的直角坐标为(10),求△PMQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆过点,且椭圆的离心率为,直线与椭圆相交于两点,线段的中垂线交椭圆两点.

1)求椭圆的标准方程;

2)求线段长的最大值;

3)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线在点处的切线斜率为1,求实数a的值;

2)当时,求证:

3)若函数在区间上存在极值点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),在矩形中,在边上,.沿折起,使平面和平面都与平面垂直,如图(2).

1)试判断图(2)中直线的位置关系,并说明理由;

2)求平面和平面所成锐角二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率是,上顶点坐标为.

1)求椭圆的方程;

2)问是否存在斜率为1的直线与椭圆交于两点,为椭圆的右焦点,的重心分别为,且以线段直径的圆过原点,若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中, 边上,且,将沿折到的位置,使得平面平面.

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过抛物线的焦点,且与抛物线的准线相切.

1)求抛物线的标准方程;

2)设经过点的直线交抛物线两点,点关于轴的对称点为点,若的面积为6,求直线的方程.

查看答案和解析>>

同步练习册答案