精英家教网 > 高中数学 > 题目详情
已知等比数列{an}的前n项和为Sn,S3=
7
2
,S6=
63
2

(1)求等比数列{an}的通项公式;
(2)令bn=6n-61+log2an,证明数列{bn}为等差数列;
(3)对(2)中的数列{bn},前n项和为Tn,求使Tn最小时的n的值.
分析:(1)根据等比数列求和公式建立a1与q的方程组,从而可求出数列{an}的通项公式;
(2)先求出数列{bn}的通项公式,然后计算bn+1-bn看其是否常数,从而可判断是否为等差数列;
(3)令
bn≤0
bn+1≥0
求出满足条件的n,从而可求出使Tn最小时的n的值.
解答:解:(1)∵S6=
63
2
≠2S3,∴q≠1
a1(1-q3)
1-q
=
7
2
a1(1-q6)
1-q
=
63
2

两式子相除得1+q3=9,解得q=2,
代入解得a1=
1
2

∴an=a1qn-1=2n-2
(2)bn=6n-61+log2an=7n-63,
bn+1-bn=7(n+1)-63-7n+63=7,
∴{bn}为等差数列;
(3)令
bn≤0
bn+1≥0
7n-63≤0
7n-56≥0

解得8≤n≤9,
∴当n=8或n=9时,前n项和为Tn最小.
点评:本题主要考查了数列的通项,以及数列的判定和数列的求和,同时考查了运算求解能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案