精英家教网 > 高中数学 > 题目详情
函数f(x)=loga(2-ax)在[0,1]上是x的减函数,则实数a的取值范围是(  )
分析:先将函数f(x)=loga(2-ax)转化为y=logat,t=2-ax,两个基本函数,再利用复合函数求解.
解答:解:令y=logat,t=2-ax,
(1)若0<a<1,则函y=logat是(0,+∞)上的减函数,
而t为[0,1]上的减函数,
此时f(x)不会是[0,1]上的减函数.
(2)若a>1,则函y=logat是(0,+∞)上的增函数,
只需t为[0,1]上的减函数,且t>0在[0,1]上恒成立,
即a>0且2-a×1>0
此时,1<a<2,
综上:实数a 的取值范围是(1,2)
故选B.
点评:本题主要考查复合函数单调性的判断方法及其应用,本题的关键是分解为两个基本函数,利用同增异减的结论研究其单调性,再求参数的范围考察了分类讨论的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、设函数f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,则f(x12)+f(x22)+…f(x102)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是减函数,则实数a的范围是(  )
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log 2(x2-x-2)
(1)求f(x)的定义域;
(2)当x∈[3,4]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设有三个命题:“①0<
1
2
<1.②函数f(x)=log 
1
2
x是减函数.③当0<a<1时,函数f(x)=logax是减函数”.当它们构成三段论时,其“小前提”是
(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•茂名二模)设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的高调函数.现给出下列命题:
①函数f(x)=log 
1
2
x为(0,+∞)上的高调函数;
②函数f(x)=sinx为R上的高调函数;
③如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的高调函数,那么实数m的取值范围是[2,+∞);
其中正确的命题的个数是(  )

查看答案和解析>>

同步练习册答案