(本小题满分14分)(理科)已知椭圆
,过焦点且垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.
(1)求椭圆的方程;
(2)过点![]()
的直线
交椭圆于
两点,交直线
于点
,且
,
,
求证:
为定值,并计算出该定值.
科目:高中数学 来源: 题型:解答题
(本题满分13分)
已知椭圆C的两焦点分别为
,长轴长为6,
⑴求椭圆C的标准方程;
⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
. (本题满分15分)已知点
,
为一个动点,且直线
的斜率之积为![]()
(I)求动点
的轨迹
的方程;
(II)设
,过点
的直线
交
于
两点,
的面积记为S,若对满足条件的任意直线
,不等式
的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)设双曲线
的两个焦点分别为
,离心率为2.
(Ⅰ)求此双曲线的渐近线
的方程;
(Ⅱ)若
、
分别为
上的点,且
,求线段
的中点
的轨迹方程,并说明轨迹是什么曲线;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分16分)
如图,椭圆C:
+
=1(a>b>0)的焦点F1,F2和短轴的一个端点A构成等边三角形,
点(
,
)在椭圆C上,直线l为椭圆C的左准线.
(1) 求椭圆C的方程;
(2) 点P是椭圆C上的动点,PQ ⊥l,垂足为Q.
是否存在点P,使得△F1PQ为等腰三角形?
若存在,求出点P的坐标;若不存在,说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆![]()
的离心率为
,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知动直线
与椭圆
相交于
、
两点.
①若线段
中点的横坐标为
,求斜率
的值;
②已知点
,求证:
为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com