精英家教网 > 高中数学 > 题目详情
12.我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤.斩末一尺,重二斤.”意思是:“现有一根金锤,头部的1尺,重4斤;尾部的1尺,重2斤;且从头到尾,每一尺的重量构成等差数列.”则下列说法错误的是(  )
A.该金锤中间一尺重3斤
B.中间三尺的重量和是头尾两尺重量和的3倍
C.该金锤的重量为15斤
D.该金锤相邻两尺的重量之差的绝对值为0.5斤

分析 由题意可知等差数列的首项与第5项,再由通项公式求得公差,求得第三项,再求出中间三项的和,逐一核对四个选项得答案.

解答 解:由题意可知等差数列中a1=4,a5=2,
则d=$\frac{{a}_{5}-{a}_{1}}{5-1}=\frac{2-4}{4}=-\frac{1}{2}$,
∴${a}_{3}={a}_{1}+2d=4-2×\frac{1}{2}=3$,
a1+a5=6,${a}_{2}+{a}_{3}+{a}_{4}=3{a}_{1}+6d=3×4-6×\frac{1}{2}=9$.
∴S5=15.
∴A正确,B错误,C正确,D正确.
故选:B.

点评 本题考查等差数列的通项公式,考查了等差数列的前n项和,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.数列$(1+\frac{1}{2})$,$(2+\frac{2}{3})$,$(3+\frac{3}{4})$,$(4+\frac{4}{5})$…的一个通项n+$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线${C_1}:\frac{x^2}{2}-{y^2}=1$与双曲线${C_2}:\frac{x^2}{2}-{y^2}=-1$,给出下列说法,其中错误的是(  )
A.它们的焦距相等B.它们的焦点在同一个圆上
C.它们的渐近线方程相同D.它们的离心率相等

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,则函数g(x)=Acos(φx+ω)图象的一个对称中心可能为(  )
A.$(-\frac{5}{2},0)$B.$(\frac{1}{6},0)$C.$(-\frac{1}{2},0)$D.$(-\frac{11}{6},0)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,点C在以AB为直径的圆O上,PA垂直与圆O所在平面,G为△AOC的垂心.
(1)求证:平面OPG⊥平面PAC;
(2)若PA=AB=2AC=2,点Q在线段PA上,且PQ=2QA,求三棱锥P-QGC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)=xln(ax+1)(a≠0).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若a>0且满足:对?x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤ln3-ln2,试比较ea-1与${a^{1-\frac{1}{e}}}$的大小,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\frac{{{e^x}+1}}{{{e^x}-1}}$•cosx的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图所示的“数阵”的特点是:毎行每列都成等差数列,则数字37在图中出现的次数为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a,}&{x<0}\\{\frac{1}{x},}&{x>0}\end{array}\right.$的图象上存在不同的两点A、B,使得曲线y=f(x)在这两点处的切线重合,则实数a的取值范围是(  )
A.($\frac{1}{4}$,+∞)B.(2,+∞)C.(-∞,2)D.(-1,$\frac{1}{4}$)

查看答案和解析>>

同步练习册答案