已知实数
,函数
.
(1)当
时,求
的最小值;
(2)当
时,判断
的单调性,并说明理由;
(3)求实数
的范围,使得对于区间
上的任意三个实数
,都存在以
为边长的三角形.
(1)2;(2)递增;(3)
.
解析试题分析:(1)研究函数问题,一般先研究函数的性质,如奇偶性,单调性,周期性等等,如本题中函数
是偶函数,因此其最小值我们只要在
时求得即可;(2)
时,
可化简为
,下面我们只要按照单调性的定义就可证明在
上函数是单调递增的,当然在
上是递减的;(3)处理此问题,首先通过换元法把问题简化,设
,则函数
变为
,问题变为求实数
的范围,使得在区间
上,恒有
.对于函数
,我们知道,它在
上递减,在
上递增,故我们要讨论它在区间
上的最大(小)值,就必须分类讨论,分类标准显然是
,
,
,在
时还要讨论最大值在区间
的哪个端点取得,也即共分成四类.
试题解析:易知
的定义域为
,且
为偶函数.
(1)
时,
2分
时
最小值为2. 4分
(2)
时,![]()
时,
递增;
时,
递减; 6分
为偶函数.所以只对
时,说明
递增.
设
,所以
,得![]()
![]()
所以
时,
递增; 10分
(3)
,
,![]()
从而原问题等价于求实数
的范围,使得在区间
上,
恒有
. 11分
①当
时,
在
上单调递增,
由
得
,
从而
; 12分
②当
时,
在
上单调递减,在
上单调递增,
,
由
得
,从而
; 13分
③当
时,
在![]()
科目:高中数学 来源: 题型:解答题
我国西部某省4A级风景区内住着一个少数民族村,该村投资了800万元修复和加强民俗文化基础设施,据调查,修复好村民俗文化基础设施后,任何一个月内(每月按30天计算)每天的旅游人数
与第x天近似地满足
(千人),且参观民俗文化村的游客人均消费
近似地满足
(元).
(1)求该村的第x天的旅游收入
(单位千元,1≤x≤30,
)的函数关系;
(2)若以最低日收入的20%作为每一天的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com