精英家教网 > 高中数学 > 题目详情
9.已知一几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{π}{6}+\frac{1}{3}$B.$\frac{π}{12}+1$C.$\frac{π}{12}+\frac{1}{3}$D.$\frac{π}{4}+\frac{1}{3}$

分析 由三视图可知:该几何体由一个三棱锥与一个圆锥的$\frac{1}{4}$组成.

解答 解:由三视图可知:该几何体由一个三棱锥与一个圆锥的$\frac{1}{4}$组成.
∴该几何体的体积V=$\frac{1}{4}×\frac{1}{3}×π×{1}^{2}×1$+$\frac{1}{3}×\frac{1}{2}×2×1×1$=$\frac{π}{12}$+$\frac{1}{3}$.
故选:C.

点评 本题考查了四棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1,F2,以F1为圆心,|F1F2|为半径的圆与双曲线在第一、二象限内依次交于A,B两点,若|F1B|=3|F2A|,则该双曲线的离心率为(  )
A.$\frac{5}{4}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如果向量$\overrightarrow a=(n,1)$与$\overrightarrow b=(4,n)$共线,且方向相反,则n的值为(  )
A.±2B.-2C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2+2x+alnx
(1)若曲线y=f(x)在x=1处切线的斜率为5,求实数a的值;
(2)当t≥1时,不等式f(2t-1)-2f(t)≥-3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$cos(3π-α)=\frac{4}{5}$,则cos(π+α)的值是(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数f(x)=lnx+$\frac{1}{2}{x^2}$+ax(a∈R),g(x)=ex+$\frac{3}{2}{x^2}$.
(1)讨论f(x)的极值点的个数;
(2)若对于?x>0,总有f(x)≤g(x).(i)求实数a的取值范围;(ii)求证:对于?x>0,不等式ex+x2-(e+1)x+$\frac{e}{x}$>2成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设椭圆$\frac{{x}^{2}}{10}$+y2=1和双曲线$\frac{{x}^{2}}{8}$-y2=1的公共焦点分别为F1,F2,P是这两曲线的交点,则△PF1F2的外接圆半径为(  )
A.1B.2C.2$\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)是定义在R上的奇函数,满足f(-$\frac{3}{2}$+x)=f($\frac{3}{2}$+x),当x∈[0,$\frac{3}{2}$]时,f(x)=ln(x2-x+1),则函数f(x)在区间[0,6]上的零点个数是(  )
A.3B.5C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点分别为A1、A2,上、下顶点分别为B2、B1,四边形A1B1A2B2的面积为4$\sqrt{3}$,且该四边形内切圆的方程为x2+y2=$\frac{12}{7}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l:y=kx+m(k,m均为常数)与椭圆C相交于M,N两个不同的点(M,N异于A1,A2),若以MN为直径的圆过椭圆C的右顶点A2,试判断直线l能否过定点?若能,求出该定点坐标;若不能,也请说明理由.

查看答案和解析>>

同步练习册答案