精英家教网 > 高中数学 > 题目详情

【题目】在等差数列{an}中,2a9a12+13a37,其前n项和为Sn

1)求数列{an}的通项公式;

2)求数列{}的前n项和Tn,并证明Tn

【答案】(1)(2)见解析

【解析】

1)等差数列{an}的公差设为d,运用等差数列的通项公式,解方程可得首项和公差,进而得到所求通项公式;

2)运用等差数列的求和公式,求得),再由数列的裂项相消求和可得Tn,再由不等式的性质即可得证.

1)等差数列{an}的公差设为d2a9a12+13a37

可得2a1+8d)=a1+11d+13a1+2d7

解得a13d2

an3+2n1)=2n+1

2Snn3+2n+1)=nn+2),

),

n项和Tn1

1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线上的任意一点到两定点距离之和为,直线交曲线两点,为坐标原点.

1)求曲线的方程;

2)若不过点且不平行于坐标轴,记线段的中点为,求证:直线的斜率与的斜率的乘积为定值;

3)若直线过点,求面积的最大值,以及取最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,部分对应值如下表,又知的导函数的图象如下图所示:

-1

0

4

5

1

2

2

1

则下列关于的命题:

为函数的一个极大值点;

②函数的极小值点为2;

③函数上是减函数;

④如果当时,的最大值是2,那么的最大值为4;

⑤当时,函数有4个零点.

其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过三点.

(1)求圆的标准方程;

(2)若过点N 的直线被圆截得的弦AB的长为,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…, ,…,即当 <n≤ (k∈N*)时, .记Sn=a1+a2+…+an(n∈N).对于l∈N , 定义集合Pl=﹛n|Sn为an的整数倍,n∈N , 且1≤n≤l}
(1)求P11中元素个数;
(2)求集合P2000中元素个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018614日,世界杯足球赛在俄罗斯拉开帷幕.通过随机调查某小区100名性别不同的居民是否观看世界杯比赛,得到以下列联表:

观看世界杯

不观看世界杯

总计

40

20

60

15

25

40

总计

55

45

100

经计算的观测值.

附表:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

参照附表,所得结论正确的是(

A. 以上的把握认为该小区居民是否观看世界杯与性别有关

B. 以上的把握认为该小区居民是否观看世界杯与性别无关

C. 在犯错误的概率不超过0.005的前提下,认为该小区居民是否观看世界杯与性别有关

D. 在犯错误的概率不超过0.001的前提下,认为该小区居民是否观看世界杯与性别无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《厉害了,我的国》这部电影记录:到2017年底,我国高铁营运里程达2.5万公里,位居世界第一位,超过第二名至第十名的总和,约占世界高铁总量的三分之二.如图是我国2009年至2017年高铁营运里程(单位:万公里)的折线图.

根据这9年的高铁营运里程,甲、乙两位同学分别选择了与时间变量的两个回归模型①.

(1)求(精确到0.01);

(2)乙求得模型②的回归方程为,你认为哪个模型的拟合效果更好?并说明理由.

附:参考公式:.

参考数据:

1.39

76.94

285

0.22

0.09

3.72

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,函数
(1)记f(x)在区间[0,4]上的最大值为g(a),求g(a)的表达式;
(2)是否存在a使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数在区间上单调递增,在区间上单调递减.

(Ⅰ)若,求的值;

(Ⅱ)求函数在区间上的最小值(用表示).

查看答案和解析>>

同步练习册答案