【题目】某乳业公司生产甲、乙两种产品,需要A,B,C三种苜蓿草饲料,生产1个单位甲种产品和生产1个单位乙种产品所需三种苜蓿草饲料的吨数如下表所示:
产品 苜蓿草饲料 | A | B | C |
甲 | 4 | 8 | 3 |
乙 | 5 | 5 | 10 |
现有A种饲料200吨,B种饲料360吨,C种饲料300吨,在此基础上生产甲乙两种产品,已知生产1个单位甲产品,产生的利润为2万元;生产1个单位乙产品,产生的利润为3万元,分别用x,y表示生产甲、乙两种产品的数量.
(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(2)问分别生产甲乙两种产品多少时,能够产出最大的利润?并求出此最大利润.
【答案】(1)
;图见解析;(2)当甲产品生产
吨,乙产品生产
吨时,利润最大,最大利润为
万元
【解析】
(1)根据三种饲料的数量和生产每吨甲乙产品的消耗量可构造不等式,由此可得满足条件的不等式组即为所求数学关系式;由线性规划知识可画出对应的平面区域;
(2)设利润
,将问题转化为
在
轴截距最大问题的求解,通过直线平移可确定最大值点,代入可求得结果.
(1)
种饲料有
吨,则
;
种饲料有
吨,则
;
种饲料有
吨,则
,又
,![]()
满足生产条件的数学关系式为![]()
所对应的平面区域如下图阴影部分所示:
![]()
(2)设利润为
,则![]()
当
取最大值时,
在
轴截距最大
由
平移可知,当
过点
时,在
轴截距最大
![]()
由
得:
![]()
当甲产品生产
吨,乙产品生产
吨时,利润最大,最大利润为
万元
科目:高中数学 来源: 题型:
【题目】某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交
元的管理费,预计当每件商品的售价为
元时,一年的销售量为
万件.
(1)求该连锁分店一年的利润
(万元)与每件商品的售价
的函数关系式
;
(2)当每件商品的售价为多少元时,该连锁分店一年的利润
最大,并求出
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆锥的侧面展开图是一个半圆.
![]()
(1)求圆锥的母线与底面所成的角;
(2)过底面中心
且平行于母线
的截平面,若截面与圆锥侧面的交线是焦参数(焦点到准线的距离)为
的抛物线,求圆锥的全面积;
(3)过底面点
作垂直且于母线
的截面,若截面与圆锥侧面的交线是长轴为
的椭圆,求椭圆的面积(椭圆号
的面积
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照
分成5组,制成如图所示频率分直方图.
![]()
(1)求图中x的值;
(2)求这组数据的平均数和中位数;
(3)已知满意度评分值在
内的男生数与女生数3:2,若在满意度评分值为
的人中随机抽取2人进行座谈,求2人均为男生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线x2=4y的焦点F和点A(-1,8),点P为抛物线上一点,则|PA|+|PF|的最小值为( )
A. 16 B. 6 C. 12 D. 9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,右焦点为
,左顶点为A,右顶点B在直线
上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P是椭圆C上异于A,B的点,直线
交直线
于点
,当点
运动时,判断以
为直径的圆与直线PF的位置关系,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.2018年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元,每生产x(百辆),需另投入成本
万元,且
.由市场调研知,每辆车售价5万元,且全年内生产的车辆当年能全部销售完.
(1)求出2018年的利润L(x)(万元)关于年产量x(百辆)的函数关系式;(利润=销售额-成本)
(2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆O经过椭圆C:
=1(a>b>0)的两个焦点以及两个顶点,且点(b,
)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l与圆O相切,与椭圆C交于M、N两点,且|MN|=
,求直线l的倾斜角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com