精英家教网 > 高中数学 > 题目详情
(2012•佛山一模)某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45)岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是(  )
分析:由于在频率分布直方图中,中位数使得直方图左右两侧频率相等,故中位数右侧的频率为0.50.由残缺的频率分布直方图可求[35,45)段上的频率是0.40<0.50,[30,45)岁之间频率是0.75>0.50,可知中位数在在区间[30,35)内,再根据频率即可求出中位数.
解答:解:由图知,抽到的司机年龄都在[30,35)岁之间频率是0.35;
抽到的司机年龄都在[35,40)岁之间频率是0.30;
抽到的司机年龄都在[40,45)岁之间频率是0.10.
由于在频率分布直方图中,中位数使得左右频率相等,故中位数右侧的频率为0.50.
而[35,45)段上的频率是0.40<0.50,[30,45)岁之间频率是0.75>0.50;
故中位数在区间[30,35)内,还要使其右侧且在[30,35)岁之间频率是0.10,
所以中位数是35-
0.10
0.07
≈33.6.
故答案选C.
点评:本题考查了由频率分布直方图得出中位数的内容,要掌握在频率分布直方图中,中位数使得直方图左右两侧频率相等,即使得直方图左右两侧面积相等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•佛山一模)设n∈N*,圆Cn:x2+y2=
R
2
n
(Rn>0)与y轴正半轴的交点为M,与曲线y=
x
的交点为N(
1
n
yn
),直线MN与x轴的交点为A(an,0).
(1)用n表示Rn和an
(2)求证:an>an+1>2;
(3)设Sn=a1+a2+a3+…+an,Tn=1+
1
2
+
1
3
+…+
1
n
,求证:
7
5
Sn-2n
Tn
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山一模)某学校三个社团的人员分布如下表(每名同学只参加一个社团)
合唱社 粤曲社 书法社
高一 45 30 a
高二 15 10 20
学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从社团成员中抽取30人,结果合唱社被抽出12人,则这三个社团人数共有
150
150

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山一模)如图,三棱锥P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E为PC的中点,点F在PA上,且2PF=FA.
(1)求证:平面PAC平面BEF;
(2)求平面ABC与平面BEF所成的二面角的平面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山一模)下列函数中既是奇函数,又在区间(-1,1)上是增函数的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山一模)函数y=
3
sinx+sin(x+
π
2
)的最小正周期是

查看答案和解析>>

同步练习册答案