精英家教网 > 高中数学 > 题目详情

已知在直四棱柱ABCD-A1B1C1D1中,底面ABCD为直角梯形,且满足AD⊥AB,BC∥AD,AD=16,AB=8,BB1=8.E,F分别是线段A1A,BC上的点.

(1)若A1E=5,BF=10,求证:BE∥平面A1FD.   

(2)若BD⊥A1F,求三棱锥A1-AB1F的体积.

 

【答案】

【解析】(1)过E作EG∥AD交A1D于G,连结GF.

     ∵=,所以=,∴EG=10=BF.

     ∵BF∥AD,EG∥AD,∴BF∥EG.

     ∴四边形BFGE是平行四边形.

     ∴BE∥FG.…………………………………4分

     又FGÌ平面A1FD,BEË平面A1FD,

     ∴BE∥平面A1FD.                      …………………………………6分

(2)∵在直四棱柱ABCD-A1B1C1D1中,A1A⊥面ABCD,BDÌ面ABCD,∴A1A⊥BD.                         

      由已知,BD⊥A1F,AA1∩A1F=A1,

      ∴BD⊥面A1AF.                         

      ∴BD⊥AF.                             ………………………………8分

  ∵梯形ABCD为直角梯形,且满足AD⊥AB,BC∥AD,

      ∴在Rt△BAD中,tan∠ABD==2.

        在Rt△ABF中,tan∠BAF==.    

      ∵BD⊥AF,∴∠ABD+∠BAF=,∴=,BF=4.      ………………10分

      ∵在直四棱柱ABCD-A1B1C1D1中,A1A⊥面ABCD,

∴面AA1B1B⊥面ABCD,又面ABCD∩面AA1B1B=AB,∠ABF=90°,

∴FB⊥面AA1B1B,即BF为三棱锥F-A1B1A的高.  ………………12分

      ∵∠AA1B1=90°,AA1=BB1=8,A1B1=AB=8,∴S=32.

      ∴V=V=×S×BF=.…14分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)如图a所示,某地为了开发旅游资源,欲修建一条连接风景点P和居民区O的公路,点P所在的山坡面与山脚所在水平面α所成的二面角为θ(0°<θ<90°),且sinθ=,点P到平面α的距离PH=0.4(km).沿山脚原有一段笔直的公路AB可供利用.从点O到山脚修路的造价为a万元/km,原有公路改建费用为万元/km.当山坡上公路长度为l km(1≤l≤2)时,其造价为(l2+1)a万元已知OA⊥AB,PB⊥AB,AB=1.5(km),OA=(km).

(1)在AB上求一点D,使沿折线PDAO修建公路的总造价最小;

(2)对于(1)中得到的点D,在DA上求一点E,使沿折线PDEO修建公路的总造价最小;

(3)在AB上是否存在两个不同的点D′,E′,使沿折线.PD′E′O修建公路的总造价小于(2)中得到的最小总造价?证明你的结论.

a)

第19题图

(文)如图b所示,直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,△ABC为等边三角形,且AA1=AD=DC=2.

(1)求AC1与BC所成角的余弦值;

(2)求二面角C1-BD-C的大小;

(3)设M是BD上的点,当DM为何值时,D1M⊥平面A1C1D?并证明你的结论.

第19题图

查看答案和解析>>

同步练习册答案