精英家教网 > 高中数学 > 题目详情
如果把直角三角形的三边都减少同样的长度,仍能构成三角形,则这个新的三角形的形状为(  )
分析:先设出原来的三边为a、b、c且c2=a2+b2,以及增加同样的长度为x,得到新的三角形的三边为a-x、b-x、c-x,知c-x为最大边,所以所对的角最大,然后根据余弦定理判断出余弦值为正数,所以最大角为锐角,得到三角形为钝角三角形.
解答:解:设减小同样的长度为x,原三边长为a、b、c,且c2=a2+b2,c为最大边.
则新的三角形的三边长为a-x、b-x、c-x,可知c-x为最大边,其对应角最大.
由于a-x+b-x>c-x,∴a+b-c>x,
而(a-x)2+(b-x)2-(c-x)2=x2-2(a+b-c)x=x[x-2(a+b-c)]
<x[(a+b-c)-2(a+b-c)]=x[-(a+b-c)]=-x<(a+b-c)<0,
由余弦定理知新的三角形的最大角的余弦值为
(a-x)2+(b-x) 2 -(c-x) 2
2(a-x)(b-x)
<0,
故新三角形的最大角为钝角,新三角形为钝角三角形,
故选C.
点评:本题主要考查学生灵活运用余弦定理解决实际问题的能力,以及掌握三角形一些基本性质的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

70、在平面内,如果用一条直线去截正方形的一个角,那么截下的一个直角三角形按图1所标边长,由勾股定理有:c2=a2+b2.设想正方形换成正方体,把截线换成如图2所示的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O-LMN,如果用S1,S2,S3表示三个侧面面积,S4表示截面面积,那么你类比得到的结论是
S42=S12+S22+S32

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一个等腰直角三角形的硬纸片△ABC中,∠ACB=90°,AC=4cm,CD是斜边上的高,沿CD把△ABC折成直二面角.
(1)如果你手中只有一把能够量长度的直尺,应该如何确定A、B的位置,使得二面角A-CD-B是直二面角?证明你的结论.
(2)试在平面ABC上确定一点P,使DP与平面ABC内任意一条直线垂直,证明你的结论.
(3)如果在折成的三棱锥内有一个小球,求出球的半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一个等腰直角三角形的硬纸片△ABC中,∠ACB=90°,AC=4cmCD是斜边上的高,沿CD把△ABC折成直二面角.

⑴如果你手中只有一把能够量长度的直尺,应该如何确定AB的位置,使得二面角ACDB是直二面角?证明你的结论.

⑵试在平面ABC上确定一点P,使DP与平面ABC内任意一条直线垂直,证明你的结论.

⑶如果在折成的三棱锥内有一个小球,求出球的半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一个等腰直角三角形的硬纸片△ABC中,∠ACB=90°,AC=4cmCD是斜边上的高,沿CD把△ABC折成直二面角.

⑴如果你手中只有一把能够量长度的直尺,应该如何确定AB的位置,使得二面角ACDB是直二面角?证明你的结论.

⑵试在平面ABC上确定一点P,使DP与平面ABC内任意一条直线垂直,证明你的结论.

⑶如果在折成的三棱锥内有一个小球,求出球的半径的最大值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖北省鄂州市高一(下)期末数学试卷(文理合卷)(解析版) 题型:解答题

如图,一个等腰直角三角形的硬纸片△ABC中,∠ACB=90°,AC=4cm,CD是斜边上的高,沿CD把△ABC折成直二面角.
(1)如果你手中只有一把能够量长度的直尺,应该如何确定A、B的位置,使得二面角A-CD-B是直二面角?证明你的结论.
(2)试在平面ABC上确定一点P,使DP与平面ABC内任意一条直线垂直,证明你的结论.
(3)如果在折成的三棱锥内有一个小球,求出球的半径的最大值.

查看答案和解析>>

同步练习册答案