精英家教网 > 高中数学 > 题目详情
(2012•长宁区二模)如图,已知四棱锥P-ABCD,底面ABCD为矩形,PA=AB=2,AD=2AB,PA⊥平面ABCD,E,F分别是BC,PC的中点.
(1)求异面直线PB与AC所成的角的余弦值;
(2)求三棱锥A-EFD的体积.
分析:(1)分别以AB、AD、AP所在直线为x、y、z轴,建立如图所示的空间直角坐标系,得到向量
PB
AC
的坐标,利用空间两个向量夹角公式,可计算出异面直线PB与AC所成的角的余弦值;
(2)由点F是PC中点,得F到平面AED的距离为PA长度的一半,从而得到三棱锥F-AED的高,算出△AED的面积S结合锥体的体积公式,可算出三棱锥F-AED的体积,即三棱锥A-EFD的体积.
解答:解:(1)分别以AB、AD、AP所在直线为x、y、z轴,建立如图所示的空间直角坐标系,则
P(0,0,2),B(2,0,0),C(2,4,0),
PB
=(2,0,-2)
AC
=(2,4,0)
….(4分)
PB
AC
所成的角为θ,则cosθ=
4
2
2
•2
5
=
10
10
,….(6分)
∴异面直线PB与AC所成角的余弦值为
10
10
.….(8分)
(2)∵F是PC中点,∴F(1,2,1),可得F到平面AED的距离为1
又∴△AED的面积S=
1
2
S矩形ABCD=
1
2
×2×4
=4
∴三棱锥A-EFD的体积VA-EFD=VF-AED=
1
3
S△AED×1=
4
3
.…(14分)
点评:本题给出特殊的四棱锥,求异面直线所成角余弦值并求锥体的体积,着重考查了用空间向量求直线间的夹角、线面垂直的性质和锥体的体积公式等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•长宁区二模)已知有相同两焦点F1、F2的椭圆
x2
m
+y2=1(m>1)
和双曲线
x2
n
-y2=1(n>0)
,P是它们的一个交点,则△F1PF2的形状是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长宁区二模)在△ABC中,M是BC的中点,AM=1,点P在AM上且满足
PA
=-2
PM
,则
PA
•(
PB
+
PC
)
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长宁区二模)圆的极坐标方程为ρ=2cosθ-sinθ,则该圆的半径为
5
2
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长宁区二模)已知向量
a
=(2,m),若向量
b
=(-1,1)
,若
a
b
垂直,则m等于
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长宁区二模)已知α∈(
2
,2π),cotα=-2,则sinα
=
-
5
5
-
5
5

查看答案和解析>>

同步练习册答案