精英家教网 > 高中数学 > 题目详情
是否存在α、β,α∈(-
π
2
π
2
),β∈(0,π)使等式sin(3π-α)=
2
cos(
π
2
-β),
3
cos(-α)=-
2
cos(π+β)同时成立?若存在,求出α、β的值;若不存在,请说明理由.
分析:首先由诱导公式简化已知条件并列方程组,再利用公式sin2β+cos2β=1解方程组,最后根据特殊角三角函数值求出满足要求的α、β.
解答:答:存在满足要求的α、β.
解:由条件得
sinα=
2
sinβ                                                                        ①
3
cosα=
2
cosβ.                                                                  ②

2+②2得sin2α+3cos2α=2,∴cos2α=
1
2
即cosα=±
2
2

∵α∈(-
π
2
π
2
),
∴α=
π
4
或α=-
π
4

将α=
π
4
代入②得cosβ=
3
2
.又β∈(0,π),
∴β=
π
6
,代入①可知,符合.
将α=-
π
4
代入②得β=
π
6
,代入①可知,不符合.
综上可知α=
π
4
,β=
π
6
点评:本题综合考查诱导公式、同角正余弦关系式及特殊角三角函数值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2-2x+5.
(1)若函数f(x)在(-
1
3
,1)上单调递减,在(1,+∞)上单调递增,求实数a的值;
(2)是否存在正整数a,使得f(x)在 x∈(-3,
1
6
)
上必为单调函数?若存在,试求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax-lnx,a∈R.
(Ⅰ)若a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(Ⅲ)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C上任一点到定点(0,
1
8
)的距离等于它到定直线y=-
1
8
的距离.
(1)求曲线C的方程;
(2)经过P(1,2)作两条不与坐标轴垂直的直线l1、l2分别交曲线C于A、B两点,且l1⊥l2,设M是AB中点,问是否存在一定点和一定直线,使得M到这个定点的距离与它到定直线的距离相等.若存在,求出这个定点坐标和这条定直线的方程.若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
a
x
(a>0),设F(x)=f(x)+g(x).
(Ⅰ)求函数F(x)的单调区间;
(II)是否存在实数m,使得函数y=g(
2a
x2+1
)+m-1的图象与函数y=f(1+x2)的图象恰有四个不同的交点?若存在,求出实数m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
a
x
(a>0),设F(x)=f(x)+g(x).
(Ⅰ)求F(x)的单调区间;
(Ⅱ)若以y=F(x)(x∈(0,3])图象上任意一点P(x0,y0)为切点的切线的斜率 k
1
2
恒成立,求实数a的最小值.
(Ⅲ)是否存在实数m,使得函数y=g(
2a
x2+1
)+m-1的图象与y=f(1+x2)的图象恰好有四个不同的交点?若存在,求出m的取值范围,若不存在,说明理由.

查看答案和解析>>

同步练习册答案