【题目】已知cosx=﹣
,x∈(0,π)
(1)求cos(x﹣
)的值;
(2)求sin(2x+
)的值.
【答案】
(1)解:∵cosx=﹣
,x∈(0,π)
∴sinx=
=
,
∴cos(x﹣
)=
×(﹣
)+
×
=
.
(2)解:由(1)可得:sin2x=2sinxcosx=2×
=﹣
,
cos2x=2cos2x﹣1=2×
﹣1=﹣
,
∴sin(2x+
)=
sin2x+
cos2x=
(﹣
)+
×(﹣
)=﹣ ![]()
【解析】(1)由已知利用同角三角函数基本关系式可求sinx的值,利用两角差的余弦函数公式及特殊角的三角函数值即可计算得解cos(x﹣
)的值.(2)由(1)利用二倍角公式可得sin2x,cos2x的值,利用两角和的正弦函数公式,特殊角的三角函数值即可计算得解sin(2x+
)的值.
科目:高中数学 来源: 题型:
【题目】从某校高二年级学生中随机抽取了20名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.
![]()
求图中实数a的值;
若该校高二年级共有学生600名,试估计该校高二年级期中考试数学成绩不低于60分的人数;
若从数学成绩在[60,70)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值大于10的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱
中,
是等腰直角三角形,
,侧棱
,
分别为
与
的中点,点
在平面
上的射影是
的重心.
(1)求证:
平面
;
(2)求
与平面
所成角的正弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10 m到位置D,测得∠BDC=45°,则塔AB的高是( )
![]()
A. 10m B. 10
m C. 10
m D. 10
m
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
:
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,直线
的极坐标方程为
.
(Ⅰ)分别求曲线
的极坐标方程和曲线
的直角坐标方程;
(Ⅱ)设直线
交曲线
于
,
两点,交曲线
于
,
两点,求
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校100名学生期中考试数学成绩的频率分布直方图如图:
![]()
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}为等差数列,且a3=﹣6,a6=0.
(1)求{an}的通项公式.
(2)若等比数列{bn}满足b1=8,b2=a1+a2+a3 , 求{bn}的前n项和公式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com