精英家教网 > 高中数学 > 题目详情
证明:若||=||

 

答案:
解析:

证明:||=||,则||2=||2

()2=()2 2+2·2=2-22

4·=0, ·=0,∴

为以为边的平行四边形的两条对角线,若这两条对角线长度相等,平行四边形成为矩形,

<

 


提示:

利用内积求解。

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)试用ε-δ语言叙述“函数f(x)在点x=x0处连续的定义;
(2)试证明:若f(x)在点x=x0处连续,且f(x0)>0,则存在一个x0的(x0-δ,x0+δ),在这个邻域内,处处有f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E的中心是坐标原点,焦点在坐标轴上,且椭圆过点A(-2,0),B(2,0),C(1,
32
)三点.
(1)求椭圆E的方程;
(2)若点D为椭圆E上不同于A,B的任意一点,F(-1,0),H(1,0),当△DFH内切圆的面积最大时,求内切圆圆心的坐标;
(3)若直线l:y=k(x+4),(k≠0)与椭圆E交于M,N两点,点M关于x轴的对称点为P,试问直线PN能否过定点F(-1,0),若是,请证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-5:不等式选讲)
已知关于x的不等式|x-a|+1-x>0的解集为R,(1)求实数a的取值范围.(2)证明:若x-1<0,则a∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四边形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O、M分别为CE、AB的中点.
(I)求证:OD∥平面ABC;
(II)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区二模)如图,四边形ABCD为正方形,EA⊥平面ABCD,EF∥AB,AB=4,AE=2,EF=1.
(Ⅰ)求证:BC⊥AF;
(Ⅱ)若点M在线段AC上,且满足CM=
14
CA
,求证:EM∥平面FBC;
(Ⅲ)试判断直线AF与平面EBC是否垂直?若垂直,请给出证明;若不垂直,请说明理由.

查看答案和解析>>

同步练习册答案