【题目】给出下列五个命题:
①当
时,有
;
②若
是锐角三角形,则
;
③已知
是等差数列
的前
项和,若
,则
;
④函数
与
的图像关于直线
对称;
⑤当
时,不等式
恒成立,则实数
的取值范围为
.
其中正确命题的序号为___________.
科目:高中数学 来源: 题型:
【题目】已知某几何体的三视图和直观图如图所示,其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.
![]()
![]()
(1)证明:平面BCN⊥平面C1NB1;
(2)求二面角C-NB1-C1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:
![]()
①
;
②∠BAC=60°;
③三棱锥D﹣ABC是正三棱锥;
④平面ADC和平面ABC的垂直.
其中正确的是( )
A. ①② B. ②③ C. ③④ D. ①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(12分)
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
经计算得
=
=9.97,s=
=
≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数
作为μ的估计值
,用样本标准差s作为σ的估计值
,利用估计值判断是否需对当天的生产过程进行检查?剔除(
﹣3
+3
)之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,
≈0.09.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A,B是椭圆C:
+
=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是( )
A.(0,1]∪[9,+∞)
B.(0,
]∪[9,+∞)
C.(0,1]∪[4,+∞)
D.(0,
]∪[4,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,已知圆
圆心为
,过点
且斜率为
的直线与圆
相交于不同的两点
、
.
(
)求
的取值范围;
(
)是否存在常数
,使得向量
与
共线?如果存在,求
值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是 ( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com