【题目】已知椭圆
的一个焦点与上、下顶点构成直角三角形,以椭圆
的长轴长为直径的圆与直线
相切.
(1)求椭圆
的标准方程;
(2)设过椭圆右焦点且不平行于
轴的动直线与椭圆
相交于
两点,探究在
轴上是否存在定点
,使得
为定值?若存在,试求出定值和点
的坐标;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知圆
,圆心为
,定点
,
为圆
上一点,线段
上一点
满足
,直线
上一点
,满足
.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)
为坐标原点,
是以
为直径的圆,直线
与
相切,并与轨迹
交于不同的两点
.当
且满足
时,求
面积
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业里工人的工资与其生产利润满足线性相关关系,现统计了100名工人的工资
(元)与其生产利润
(千元)的数据,建立了
关于
的回归直线方程为
,则下列说法正确的是( )
A. 工人甲的生产利润为1000元,则甲的工资为130元
B. 生产利润提高1000元,则预计工资约提高80元
C. 生产利润提高1000元,则预计工资约提高130元
D. 工人乙的工资为210元,则乙的生产利润为2000元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:三棱锥
中,侧面
垂直底面,
是底面最长的边;图1是三棱锥
的三视图,其中的侧视图和俯视图均为直角三角形;图2是用斜二测画法画出的三棱锥
的直观图的一部分,其中点
在
平面内.
(Ⅰ)请在图2中将三棱锥
的直观图补充完整,并指出三棱锥
的哪些面是直角三角形;![]()
![]()
(Ⅱ)设二面角
的大小为
,求
的值;
(Ⅲ)求点
到面
的距离.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,
,
,
,若该三棱锥的四个顶点均在同一球面上,则该球的体积为( )
![]()
A.
B.
C.
D. ![]()
【答案】D
【解析】在三棱锥
中,因为
,
,
,所以
,则该几何体的外接球即为以
为棱长的长方体的外接球,则
,其体积为
;故选D.
点睛:在处理几何体的外接球问题,往往将所给几何体与正方体或长方体进行联系,常用补体法补成正方体或长方体进行处理,本题中由数量关系可证得
从而几何体的外接球即为以
为棱长的长方体的外接球,也是处理本题的技巧所在.
【题型】单选题
【结束】
21
【题目】已知函数
,则
的大致图象为( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形
中,
,
,
,
,
是
的中点,
是
与
的交点,将
沿
折起到
的位置,如图2.
![]()
图1 图2
(1)证明:
平面
;
(2)若平面
平面
,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为1的正方体
中,点
,
分别是侧面
与底面
的中心,则下列命题中错误的个数为( )
①
平面
; ②异面直线
与
所成角为
;
③
与平面
垂直; ④
.
A. 0 B. 1 C. 2 D. 3
【答案】A
【解析】对于①,∵DF
,DF
平面
,
平面
,∴
平面
,正确;
对于②,∵DF
,∴异面直线
与
所成角即异面直线
与
所成角,△
为等边三角形,故异面直线
与
所成角为
,正确;
对于③,∵
⊥
,
⊥CD,且
CD=D,∴
⊥平面
,即
⊥平面
正确;
对于④,
,正确,
故选:A
【题型】单选题
【结束】
8
【题目】已知函数
在区间
上单调递增,则实数
的取值范围是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com