精英家教网 > 高中数学 > 题目详情
(2007•奉贤区一模)已知复数:z1=log2(2x+1)+ki,z2=1-xi(其中x,k∈R),记f(x)=Re(z1•z2
(1)试写出f(x)关于x的函数解析式
(2)若函数f(x)是偶函数,求k的值
(3)求证:对任意实数m,由(2)所得函数y=f(x)的图象与直线y=
12
x+m的图象最多只有一个交点.
分析:(1)由z1=log2(2x+1)+ki,z2=1-xi,求出z1•z2后,结合f(x)=Re(z1•z2),可得f(x)关于x的函数解析式
(2)根据函数f(x)是偶函数,根据偶函数的性质,构造关于k的方程,解方程可求出k的值
(3)由(2)中结论,联立方程y=log2(2x+1)-
1
2
x和y=
1
2
x+m,即2x•(2m-1)=1,分别讨论 m=0,m<0,m>0,三种情况下函数y=f(x)的图象与直线y=
1
2
x+m的图象交点个数,即可得到答案.
解答:解:(1)∵z1=log2(2x+1)+ki,z2=1-xi
∴z1•z2=[log2(2x+1)+ki]•(1-xi)
=[log2(2x+1)+kx]+[k-x•log2(2x+1)+ki]i(2分)
f(x)=Re(z1•z2)=log2(2x+1)+kx(2分)
(2)设定义域R中任意实数,由函数f(x)是偶函数
得:f(-x)=f(x)(4分)
log2(2x+1)-kx=log2(2x+1)+kx
2kx=log2
2-x-1
2x+1
)=-x
(2k+1)x=0
得:k=-
1
2
(8分)
证明:(3)由(2)得:f(x)=log2(2x+1)-
1
2
x
联立方程:y=log2(2x+1)-
1
2
x和y=
1
2
x+m
得:log2(2x+1)-
1
2
x=
1
2
x+m (10分)
即m=log2(2x+1)-x
log2(2x+1)=x+m=log22(x+m)
得:2x+1=2(x+m)
2x•(2m-1)=1(11分)
若 m=0   方程无解(12分)
若 m<0,2m-1<0,2x<0方程无解(13分)
若m>0  2x=
1
2m-1

x=log2
1
2m-1

方程有唯一解(14分)
对任意实数m,函数y=f(x)的图象与直线y=
1
2
x+m的图象的交点最多只有一个.(15分)
点评:本题考查的知识点是函数的奇偶性的性质,函数解析式的求解方法,根的存在性及根的个数判断,是复数与函数三要素,性质,图象的综合应用,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•奉贤区一模)若sinθ<0,且sin2θ>0,则角θ的终边所在象限是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•奉贤区一模)已知:函数f(x)=
x
ax+b
(a,b∈R,ab≠0)
f(2)=
2
3
,f(x)=x
有唯一的根.
(1)求a,b的值;
(2)数列{an}对n≥2,n∈N总有an=f(an-1),a1=1;求出数列{an}的通项公式.
(3)是否存在这样的数列{bn}满足:{bn}为{an}的子数列(即{bn}中的每一项都是{an}的项)且{bn}为无穷等比数列,它的各项和为
1
2
.若存在,找出所有符合条件的数列{bn},写出它的通项公式,并说明理由;若不存在,也需说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•奉贤区一模)若虚数z满足z+
1
z
∈R
,则|z-2i|的取值范围是
[1,
5
)∪(
5
,3]
[1,
5
)∪(
5
,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•奉贤区一模)在一个口袋里装有5个白球和3个黑球,这些球除颜色外完全相同,现从中摸出3个球,至少摸到2个黑球的概率等于
2
7
2
7
 (用分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•奉贤区一模)Sn是等差数列{an}的前n项和,若a1>0且S19=0,则当Sn取得最大值时的n=
9或10
9或10

查看答案和解析>>

同步练习册答案