【题目】在如图所示的四棱锥
中,四边形
是等腰梯形,
,
,
平面
,
,
.
(1)求证:
平面
;
(2)已知二面角
的余弦值为
,求直线
与平面
所成角的正弦值.
【答案】(1)证明见解析;(2)
.
【解析】
(1)由已知可得
,结合
,由直线与平面垂直的判定可得
平面
;
(2)由(1)知,
,则
,
,
两两互相垂直,以
为坐标原点,分别以
,
,
所在直线为
,
,
轴建立空间直角坐标系,设
,0,
,由二面角
的余弦值为
求解
,再由空间向量求解直线
与平面
所成角的正弦值.
(1)证明:因为四边形
是等腰梯形,
,
,所以
.又
,所以
,
因此
,
,
又
,
且
,
,
平面
,
所以
平面
.
(2)取
的中点
,连接
,
,
由于
,因此
,
又
平面
,
平面
,所以
.
由于
,
,
平面
,
所以
平面
,故
,
所以
为二面角
的平面角.在等腰三角形
中,由于
,
因此
,又
,
因为
,所以
,所以![]()
以
为
轴、
为
轴、
为
轴建立空间直角坐标系,则
,
,![]()
,
,
设平面
的法向量为![]()
所以
,即
,令
,则
,
,
则平面
的法向量
,
,
设直线
与平面
所成角为
,则![]()
![]()
科目:高中数学 来源: 题型:
【题目】已知函数
,
,
,
,给出以下四个命题:①
为偶函数;②
为偶函数;③
的最小值为0;④
有两个零点.其中真命题的是( ).
A.②④B.①③C.①③④D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在党中央的正确领导下,通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,二月份“新冠肺炎”疫情得到了控制.甲、乙两个地区采取防护措施后,统计了从2月7日到2月13日一周的新增“新冠肺炎”确诊人数,绘制成如下折线图:
![]()
(1)根据图中甲、乙两个地区折线图的信息,写出你认为最重要的两个统计结论;
(2)治疗“新冠肺炎”药品的研发成了当务之急,某药企计划对甲地区的
项目或乙地区的
项目投入研发资金,经过评估,对于
项目,每投资十万元,一年后利润是l.38万元、1.18万元、l.14万元的概率分别为
、
、
;对于
项目,利润与产品价格的调整有关,已知
项目产品价格在一年内进行2次独立的调整,每次价格调整中,产品价格下调的概率都是
,记
项目一年内产品价格的下调次数为
,每投资十万元,
取0、1、2时,一年后相应利润是1.4万元、1.25万元、0.6万元.记对
项目投资十万元,一年后利润的随机变量为
,记对
项目投资十万元,一年后利润的随机变量为
.
(i)求
,
的概率分布列和数学期望
,
;
(ii)如果你是投资决策者,将做出怎样的决策?请写出决策理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而今年出现在湖北武汉的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等,在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.医院为筛查冠状病毒,需要检验血液是否为阳性,现有
份血液样本,有以下两种检验方式:
方式一:逐份检验,则需要检验
次.
方式二:混合检验,将其中
(
且
)份血液样本分别取样混合在一起检验.
若检验结果为阴性,这
份的血液全为阴性,因而这
份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这
份血液究竟哪几份为阳性,就要对这
份再逐份检验,此时这
份血液的检验次数总共为
.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为
.
(1)现有
份血液样本,其中只有
份样本为阳性,若采用逐份检验方式,求恰好经
次检验就能把阳性样本全部检验出来的概率.
(2)现取其中
(
且
)份血液样本,记采用逐份检验方式,样本需要检验的总次数为
,采用混合检验方式,样本需要检验的总次为
.
(i)若
,试求
关于
的函数关系式
;
(ii)若
,且采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求
的最大值.
参考数据:
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,
是椭圆上一动点(与左、右顶点不重合)已知
的内切圆半径的最大值为
,椭圆的离心率为
.
(1)求椭圆C的方程;
(2)过
的直线
交椭圆
于
两点,过
作
轴的垂线交椭圆
与另一点
(
不与
重合).设
的外心为
,求证
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):
“厨余垃圾”箱 | “可回收物”箱 | “其他垃圾”箱 | |
厨余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
(Ⅰ)试估计厨余垃圾投放正确的概率
(Ⅱ)试估计生活垃圾投放错误的概率
(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c,的方差
最大时,写出a,b,c的值(结论不要求证明),并求此时
的值.
(注:
,其中
为数据
的平均数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com