精英家教网 > 高中数学 > 题目详情

【题目】新冠状病毒严重威胁着人们的身体健康,我国某医疗机构为了调查新冠状病毒对我国公民的感染程度,选了某小区的位居民调查结果统计如下:

感染

不感染

合计

年龄不大于

年龄大于

合计

1)根据已知数据,把表格数据填写完整;

2)能否在犯错误的概率不超过的前提下认为感染新冠状病与不同年龄有关?

3)已知在被调查的年龄大于岁的感染者中有名女性,其中位是女教师,现从这名女性中随机抽取人,求至多有位教师的概率.

附:.

【答案】1)见解析;(2)能在犯错误的概率不超过的前提下认为感染新冠状病与不同年龄有关;(3.

【解析】

1)根据所选居民总人数为可完善列联表;

2)计算出的观测值,结合临界值表可得出结论;

3)计算出所有的基本事件数,并求出事件“所抽取的人中至多有名教师”所包含的基本事件数,利用古典概型的概率公式可求得所求事件的概率.

1)由于所选居民总人数为列联表如下表所示:

感染

不感染

合计

年龄不大于

年龄大于

合计

2

所以能在犯错误的概率不超过的前提下认为感染新冠状病与不同年龄有关;

3)从人任意抽人的所有等可能事件共个,

其中至多位教师有个基本事件,所以所求概率是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的极值点;

(2)若函数在区间内无零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,且椭圆的一个顶点与抛物线的焦点重合,离心率为.

(1)求椭圆的标准方程;

(2)过椭圆的右焦点且斜率存在的直线交椭圆两点,线段的垂直平分线交轴于点,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蛇养殖基地因国家实施精准扶贫,大力扶持农业产业发展,拟扩大养殖规模.现对该养殖基地已经售出的王锦蛇的体长(单位:厘米)进行了统计,得到体长的频数分布表如下:

体长(厘米)

频数

40

50

110

160

120

20

(1)将王锦蛇的体长在各组的频率视为概率,赵先生欲从此基地随机购买3条王锦蛇,求至少有2条体长不少于200厘米的概率.

(2)为了拓展销售市场,该养殖基地决定购买王锦蛇与乌梢蛇两类成年母蛇用于繁殖幼蛇,这两类蛇各200条的相关信息如下表.

繁殖年限(年)

3

4

5

6

王锦蛇(条)

20

60

80

40

乌梢蛇(条)

30

80

70

20

若王锦蛇、乌梢蛇成年母蛇的购买成本分别为650元/条、600元/条,每条母蛇平均可为养殖场获得1200元/年的销售额,且每条蛇的繁殖年限均为整数,将每条蛇的繁殖年限的频率看作概率,以每条蛇所获得的毛利润(毛利润=总销售额-购买成本)的期望值作为购买蛇类的依据,试问:应购买哪类蛇?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】时,不等式成立,则实数k的取值范围是______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若对任意,函数的图像不在轴上方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

()时,求曲线在点处的切线方程;

()时,若在区间上的最小值为-2,其中是自然对数的底数,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】部分与整体以某种相似的方式呈现称为分形,一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统,分形几何学不仅让人们感悟到科学与艺术的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义,如图,由波兰数学家谢尔宾斯基1915年提出的谢尔宾斯基三角形就属于一种分形,具体作法是取一个实心三角形,沿三角形的三边中点连线.将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形,若记图①三角形的面积为,则第n个图中阴影部分的面积为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用分期付款的方式购买某家用电器一件,价格为1 150元,购买当天先付150元,以后每月这一天还款一次,每次还款数额相同,20个月还清,月利率为1%,按复利计算.若交付150元后的第一个月开始算分期付款的第一个月,全部欠款付清后,请问买这件家电实际付款多少元?每月还款多少元?(最后结果保留4个有效数字)

参考数据:(1+1%)19=1.208,(1+1%)20=1.220,(1+1%)21=1.232.

查看答案和解析>>

同步练习册答案