精英家教网 > 高中数学 > 题目详情

求证数学公式

证明:①当n=1时,左边=2,右边=,等式成立;
②假设当n=k时,等式成立,

则当n=k+1时,
左边==(k+1)(k+2)(k+1)=(k+1)(k+2)(k+3)
即n=k+1时,等式也成立.
所以对任意正整数都成立.
分析:本题考查的知识点是数学归纳法,要证明成立,我们要先证明n=1时,等式成立,再假设n=k时,等式成立,进而求证n=k+1时,等式成立.
点评:数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若 P(n)在n=1时成立; 在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(0,+∞),对定义域内的任意x,y都有f(xy)=f(x)+f(y)-3
(1)求f(1)的值;
(2)求证:f(x)+f(
1x
)=6(x>0)

(3)若x>1时,f(x)<3,判断f(x)在其定义域上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

在某两个正数x,y之间,若插入一个正数a,使x,a,y成等比数列;若插入两个正数b,c,使x,b,c,y成等差数列,求证:(a+1)2≤(b+1)(c+1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosθ=
cosα-cosβ
1-cosαcosβ
,求证:tan2
θ
2
=tan2
α
2
cot2
β
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:α,β为锐角,且3sin2α+2sin2β=1,3sin2α-2sin2β=0.求证:α+2β=
π2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C同时满足sinA+sinB+sinC=0,cosA+cosB+cosC=0,求证:cos2A+cos2B+cos2C为定值.

查看答案和解析>>

同步练习册答案