【题目】选修4一1:几何证明选讲 如图,C是以AB为直径的半圆O上的一点,过C的直线交直线AB于E,交过A点的切线于D,BC∥OD.
(Ⅰ)求证:DE是圆O的切线;
(Ⅱ)如果AD=AB=2,求EB.![]()
【答案】证:(Ⅰ)连接AC,AB是直径,则BC⊥AC 由BC∥ODOD⊥AC![]()
则OD是AC的中垂线∠OCA=∠OAC,∠DCA=∠DAC,
∠OCD=∠OCA+∠DCA=∠OAC+∠DAC=∠DAO=90°.
OC⊥DE,所以DE是圆O的切线.
(Ⅱ) BC∥OD∠CBA=∠DOA,∠BCA=∠DAO△ABC∽△AOD
BC=
=
=
![]()
BE= ![]()
【解析】(Ⅰ)要证DE是圆O的切线,连接AC,只需证出∠DAO=90°,由BC∥ODOD⊥AC,则OD是AC的中垂线.通过△AOC,△BOC均为等腰三角形,即可证得∠DAO=90°.(Ⅱ)由 BC∥OD∠CBA=∠DOA,结合∠BCA=∠DAO,得出△ABC∽△AOD,利用比例线段求出EB.
科目:高中数学 来源: 题型:
【题目】矩形ABCD的面积为4,如果矩形的周长不大于10,则称此矩形是“美观矩形”.
(1)当矩形ABCD是“美观矩形”时,求矩形周长的取值范围;
(2)就矩形ABCD的一边长x的不同值,讨论矩形是否是“美观矩形”?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(x+
)+sin(x﹣
)+cosx+a(a∈R,a为常数). (Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若函数f(x)在[﹣
,
]上的最大值与最小值之和为
,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三国时期吴国的数学家赵爽创制了一幅“勾股方圆图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股方圆图”中,四个全等的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角
,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】偶函数y=f(x)在区间(﹣∞,﹣1]上是增函数,则下列不等式成立的是( )
A.f(﹣1)>f(
)
B.f(
)>f(﹣
)??
C.f(4)>f(3)
D.f(﹣
)>f(
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,点
坐标是
,曲线
的方程为
;以极点为坐标原点,极轴为
轴的正半轴建立平面直角坐标系,斜率是
的直线
经过点
.
(1)写出直线
的参数方程和曲线
的直角坐标方程;
(2)求证直线
和曲线
相交于两点
、
,并求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x2+aln(x+1). (Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数F(x)=f(x)+ln
有两个极值点x1 , x2且x1<x2 , 求证F(x2)>
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点. ![]()
(1)证明:EF∥BC;
(2)若AG等于⊙O的半径,且AE=MN=2
,求四边形EBCF的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com