已知函数
.
(Ⅰ)讨论函数
的单调性;
(Ⅱ)设
,证明:对任意
,总存在
,使得
.
(1)f(x)在(1,2)单调递减函数,f(x)在(2,+∞)单调递增函数;(2)证明过程详见解析.
【解析】
试题分析:本题主要考查导数的运算,利用导数研究函数的单调性、不等式等基础知识,考查函数思想、分类讨论思想,考查综合分析和解决问题的能力.第一问,先对
求导,而分子还比较复杂,所以对分子进行二次求导,导数非负,所以分子所对函数为增函数,而
,所以在
上
,在
上
,所以
在
为负值,在
上为正值,所以得出
的单调性;第二问,先对已知进行转化,转化为
恒成立,而
,即转化为
恒成立,再次转化为
,通过求导判断函数的单调性,判断
的正负.
试题解析:(1)
1分
设
,![]()
∴
在
是增函数,又
3分
∴当
时,
,则
,
是单调递减函数;
当
时,
,则
,
是单调递增函数.
综上知:
在
单调递减函数,
在
单调递增函数
6分
(2)对任意
,总存在
,使得
恒成立
等价于
恒成立,而
,即证
恒成立.等价于
,
也就是证
8分
设
,
10分
∴
在
单调递增函数,又![]()
∴当
时,
,则![]()
当
时,
,则![]()
综上可得:对任意
,总存在
,
使得
.
12分
考点:1.利用导数判断函数的单调性;2.恒成立问题.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com