精英家教网 > 高中数学 > 题目详情
已知a>0,函数fx)=ax-bx2.

(1)当b>0时,若对任意x∈R都有fx)≤1,证明a≤2;

(2)当b>1时,证明对任意x∈[0,1],|fx)|≤1的充要条件是b-1≤a≤2;

(3)当0<b≤1时,讨论对任意x∈[0,1],|fx)|≤1的充要条件.

(1)证明:依题意设对任意x∈R都有fx)≤1,?

fx)=-bx-2+,?

f)=b≤1.

x∈R,fxmax=.

b>0,x∈R,fx)≤1,?

≤1,∴a≤2.

(2)证明:仿照(1)的方法可证明.

(3)解析:∵a>0,0<b≤1时,对任意x∈[0,1],有fx)=ax-bx2≥-b≥-1,即fx)≥-1;

fx)≤1f(1)≤1a-b≤1,即a≤1+b.而a≤1+bfx)≤(1+bx-bx2≤1,即fx)≤1.

∴当a>0,0<b≤1时,对任意x∈[0,1], |fx)|≤1的充要条件是a≤1+b.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是(  )
A、?x∈R,f(x)≤f(x0B、?x∈R,f(x)≥f(x0C、?x∈R,f(x)≤f(x0D、?x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=ln(2-x)+ax.
(1)求函数f(x)的单调区间;(2)设曲线y=f(x)在点(1,f(1))处的切线为l,若l与圆(x+1)2+y2=1相切,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=ln(2-x)+ax.
(1)设曲线y=f(x)在点(1,f(1))处的切线为l,若l与圆(x+1)2+y2=1相切,求a的值;
(2)求函数f(x)的单调区间;
(3)求函数f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=lnx-ax2,x>0.(f(x)的图象连续不断)
(Ⅰ)当a=
1
8

①求f(x)的单调区间;
②证明:存在x0∈(2,+∞),使f(x0)=f(
3
2
);
(Ⅱ)若存在均属于区间[1,3]的α,β,且β-α≥1,使f(α)=f(β),证明
ln3-ln2
5
≤a≤
ln2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=
|x-2a|
x+2a
在区间[1,4]上的最大值等于
1
2
,则a的值为
 

查看答案和解析>>

同步练习册答案