精英家教网 > 高中数学 > 题目详情
如图,四棱锥S-ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°,
(Ⅰ)证明:M是侧棱SC的中点;
(Ⅱ)求二面角S-AM-B的大小.

(Ⅰ)证明:作ME∥CD交SD于点E,则ME∥AB,ME⊥平面SAD,
连结AE,则四边形ABME为直角梯形,
作MF⊥AB,垂足为F,则AFME为矩形,
设ME=x,则SE=x,
MF=AE=,FB=2-x,
由MF=FB·tan 60°,得
解得x=1,即ME=1,
从而,所以M为侧棱SC的中点。
(Ⅱ)解:MB==2,
又∠ABM=60°,AB=2,所以△ABM为等边三角形.
又由(Ⅰ)知M为SC中点,

取AM中点G,连结BG,取SA中点H,连结GH,
则BG⊥AM,GH⊥AM,
由此知∠BGH为二面角S-AM-B的平面角,
连结BH,在△BGH中,
,BH=
所以,
所以,二面角S-AM-B的大小为arccos
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.
(Ⅰ)证明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥S-ABCD的底面是边长为3的正方形,SD丄底面ABCD,SB=3
3
,点E、G分别在AB,SG 上,且AE=
1
3
AB  CG=
1
3
SC.
(1)证明平面BG∥平面SDE;
(2)求面SAD与面SBC所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•醴陵市模拟)如图,四棱锥S-ABCD的底面是矩形,SA⊥底面ABCD,P为BC边的中点,AD=2,AB=1.SP与平面ABCD所成角为
π4
. 
(1)求证:平面SPD⊥平面SAP;
(2)求三棱锥S-APD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD底面ABCD是正方形,SA⊥底面ABCD,E是SC上一点,且SE=2EC,SA=6,AB=2.
(1)求证:平面EBD⊥平面SAC;
(2)求三棱锥E-BCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•西城区二模)如图,四棱锥S-ABCD中,平面SAC与底面ABCD垂直,侧棱SA、SB、SC与底面ABCD所成的角均为45°,AD∥BC,且AB=BC=2AD.
(1)求证:四边形ABCD是直角梯形;
(2)求异面直线SB与CD所成角的大小;
(3)求直线AC与平面SAB所成角的大小.

查看答案和解析>>

同步练习册答案