【题目】已知函数f (x)=lnx﹣mx+m.
(1)若f (x)≤0在x∈(0,+∞)上恒成立,求实数m的取值范围;
(2)在(1)的条件下,对任意的0<a<b,求证:
.
【答案】
(1)解:定义域为(0,∞),f′(x)=
﹣m=
,
当m≤0时,f′(x)>0(x>0),
∴f(x)在(0,+∞)上单调递增;
当m>0时,令f′(x)>0,得0<x<
,
∴f(x)在(0,
)上单调递增;
令f′(x)<0,得x>
,
∴f(x)在(
,+∞)上单调递减.
∴当m≤0时,f(x)的单调增区间是(0,+∞),无单调减区间;
当m>0时,f(x)的单调增区间是(0,
),单调减区间是(
,+∞).
当m≤0时,f(x)在(0,+∞)上单调递增,
且f(e)=lne﹣me+m=1+m(1﹣e)>0,
∴f(x)≤0在(0,+∞)上不恒成立;
当m>0时,得f(x)max=f(
)=﹣lnm﹣1+m,
若使f(x)≤0在(0,+∞)上恒成立,只需﹣lnm﹣1+m≤0,
令g(m)=﹣lnm﹣1+m,g′(m)=
,
∴当m∈(0,1)时,g'(m)<0,
当m∈(1,+∞)时,g'(m)>0,
∴g(m)min=g(1)=0,
∴只有m=1符合题意,
综上得,m=1
(2)解:证明:由( 1)知m=1,f(x)=lnx﹣x+1,
∴
=
﹣1=
﹣1,
∵b>a>0,∴
>1,
由( 1)得,当x∈(0,+∞)时,lnx≤x﹣1,
∴ln
≤
﹣1,
∵
>1,∴
≤1,
∵
>0,∴
﹣1≤
﹣1<
﹣
=
,
∴ ![]()
【解析】(1)求出f(x)的导函数,对参数m分m≤0,m>0两类进行讨论,求出单调区间;f(x)≤0在(0,+∞)上恒成立,即函数f(x)max≤0,求出函数的最大值;(2)先对要证明的不等式当变形,构造一个形如f(x)的函数,再根据已研究函数的性质,得出要证的结论.
【考点精析】本题主要考查了利用导数研究函数的单调性和函数的最大(小)值与导数的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间
内,(1)如果
,那么函数
在这个区间单调递增;(2)如果
,那么函数
在这个区间单调递减;求函数
在
上的最大值与最小值的步骤:(1)求函数
在
内的极值;(2)将函数
的各极值与端点处的函数值
,
比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1 , x2 , x3 , x4 , 则x1+x2+x3+x4= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为2的正方体ABCD﹣A1B1C1D1中,P为底面正方形ABCD内一个动点,Q为棱AA1上的一个动点,若|PQ|=2,则PQ的中点M的轨迹所形成图形的面积是( )
A.![]()
B.![]()
C.3
D.4π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一组数据如表:
x | 1 | 2 | 3 | 4 | 5 |
y | 1.3 | 1.9 | 2.5 | 2.7 | 3.6 |
(1)画出散点图;
(2)根据下面提供的参考公式,求出回归直线方程,并估计当x=8时,y的值.
(参考公式:
=
=
,
=
﹣
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F1、F2 , 且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1、e2 , 则e1e2+1的取值范围为( )
A.(1,+∞)
B.(
,+∞)
C.(
,+∞)
D.(
,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面垂直,体积为
,底面是边长为
的正三角形.若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为( )
A.120°
B.60°
C.45°
D.30°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若正整数N除以正整数m后的余数为n,则记为N≡n(bmodm),例如10≡2(bmod4).下面程序框图的算法源于我国古代闻名中外的《中国剩余定理》.执行该程序框图,则输出的i等于( ) ![]()
A.4
B.8
C.16
D.32
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com